亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weather-aware object detection method for maritime surveillance systems

计算机科学 水准点(测量) 目标检测 对象(语法) 噪音(视频) 云计算 机器学习 人工智能 天气预报 恶劣天气 实时计算 气象学 图像(数学) 模式识别(心理学) 物理 地理 操作系统 大地测量学
作者
Mingkang Chen,Jianyong Sun,Kô Aida,Atsuko Takefusa
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 111-123 被引量:2
标识
DOI:10.1016/j.future.2023.09.030
摘要

The development of machine learning-based maritime object detection technology aims to assist ship operators in maritime surveillance. However, as maritime environments can be quite complex, developing object detection models that can handle these situations is a challenging research problem, particularly when dealing with adverse weather conditions like rain and haze. While prior research has attempted to remove weather noise and improve object detection models under various weather conditions, they are limited by computing resources and hard to adapt to the constantly changing weather conditions of maritime environments. Preventing performance degradation as weather conditions shift is a significant challenge in maritime surveillance systems. To overcome these challenges, this paper proposes a weather-aware object detection method, Weather-OD, that employs an on-board edge and on-shore cloud-based system for maritime surveillance. It employs specialized machine learning models for object detection, which can be dynamically selected based on the weather conditions to ensure highly accurate object detection with low latency at sea. Weather-OD continuously improves accuracy by periodically training the models with newly collected datasets during voyages, and efficiently manages the life cycle of multiple object detection models, taking into account the constraints of limited edge computing resources. In addition, Weather-OD uses synthetic image data with weather noise to supplement the training data under different weather conditions. We conducted an evaluation of our weather-aware object detection models using a maritime benchmark dataset, the Singapore Maritime Dataset. Our experimental results demonstrated the feasibility of our mechanism with weather classification and a significant improvement in the mean Average Precision (mAP) of maritime object detection in rainy and hazy conditions. Additionally, our approach enables the continuous improvement of object detection accuracy through model retraining with small datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
2秒前
3秒前
呜呼啦呼完成签到 ,获得积分10
11秒前
许三问完成签到 ,获得积分0
2分钟前
小美完成签到 ,获得积分10
2分钟前
聪明勇敢有力气完成签到 ,获得积分10
2分钟前
Artin完成签到,获得积分10
2分钟前
欣喜的人龙完成签到 ,获得积分10
2分钟前
3分钟前
微信研友发布了新的文献求助10
3分钟前
过分动真完成签到 ,获得积分10
4分钟前
aprise完成签到 ,获得积分10
4分钟前
ANON_TOKYO完成签到,获得积分10
4分钟前
科研通AI2S应助ANON_TOKYO采纳,获得10
4分钟前
科研通AI2S应助ANON_TOKYO采纳,获得10
4分钟前
4分钟前
沫沫完成签到 ,获得积分10
4分钟前
4分钟前
沫沫发布了新的文献求助10
4分钟前
5分钟前
Jack发布了新的文献求助10
5分钟前
嘿嘿完成签到 ,获得积分10
5分钟前
Owen应助Jack采纳,获得30
6分钟前
从别后忆相逢完成签到 ,获得积分10
6分钟前
6分钟前
Umair发布了新的文献求助10
6分钟前
6分钟前
大胆机器猫完成签到,获得积分10
6分钟前
轩辕远航完成签到 ,获得积分10
6分钟前
7分钟前
元神完成签到 ,获得积分10
7分钟前
7分钟前
ycc发布了新的文献求助10
7分钟前
香蕉觅云应助ycc采纳,获得10
7分钟前
Akim应助眼睛大追命采纳,获得10
7分钟前
Umair完成签到,获得积分10
7分钟前
TXZ06完成签到,获得积分10
7分钟前
艺霖大王完成签到 ,获得积分10
7分钟前
pegasus0802完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372870
求助须知:如何正确求助?哪些是违规求助? 2990391
关于积分的说明 8740963
捐赠科研通 2674069
什么是DOI,文献DOI怎么找? 1464852
科研通“疑难数据库(出版商)”最低求助积分说明 677681
邀请新用户注册赠送积分活动 669082