Specificity-aware Federated Learning with Dynamic Feature Fusion Network for Imbalanced Medical Image Classification

计算机科学 联合学习 人工智能 特征(语言学) 机器学习 保险丝(电气) 班级(哲学) 强化学习 集合(抽象数据类型) 图像(数学) 骨料(复合) 数据挖掘 工程类 哲学 电气工程 复合材料 材料科学 程序设计语言 语言学
作者
Guanghui Yue,Peishan Wei,Tianwei Zhou,Youyi Song,Cheng Zhao,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6373-6383 被引量:5
标识
DOI:10.1109/jbhi.2023.3319516
摘要

Recently, federated learning has become a powerful technique for medical image classification due to its ability to utilize datasets from multiple clinical clients while satisfying privacy constraints. However, there are still some obstacles in federated learning. Firstly, most existing methods directly average the model parameters collected by medical clients on the server, ignoring the specificities of the local models. Secondly, class imbalance is a common issue in medical datasets. In this paper, to handle these two challenges, we propose a novel specificity-aware federated learning framework that benefits from an Adaptive Aggregation Mechanism (AdapAM) and a Dynamic Feature Fusion Strategy (DFFS). Considering the specificity of each local model, we set the AdapAM on the server. The AdapAM utilizes reinforcement learning to adaptively weight and aggregate the parameters of local models based on their data distribution and performance feedback for obtaining the global model parameters. For the class imbalance in local datasets, we propose the DFFS to dynamically fuse the features of majority classes based on the imbalance ratio in the min-batch and collaborate the rest of features. We conduct extensive experiments on a dermoscopic dataset and a fundus image dataset. Experimental results show that our method can achieve state-of-the-art results in these two real-world medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杰杰屋发布了新的文献求助30
2秒前
Lucas应助soso采纳,获得10
2秒前
苗儿完成签到,获得积分10
3秒前
小杨完成签到 ,获得积分10
3秒前
5秒前
hhh发布了新的文献求助10
6秒前
一一应助光亮的梦山采纳,获得30
6秒前
Wynn完成签到,获得积分10
7秒前
Gxx完成签到,获得积分10
7秒前
华仔应助李嘉图采纳,获得10
8秒前
yunchen发布了新的文献求助10
8秒前
qwer0802完成签到,获得积分10
9秒前
花花发布了新的文献求助10
10秒前
爱笑映菡完成签到,获得积分10
11秒前
能干的山雁完成签到 ,获得积分10
11秒前
许之北完成签到 ,获得积分10
11秒前
充电宝应助nemo采纳,获得10
12秒前
13秒前
qiang发布了新的文献求助30
14秒前
15秒前
17秒前
思源应助Goose采纳,获得10
17秒前
18秒前
fff完成签到 ,获得积分10
18秒前
21秒前
nemo发布了新的文献求助10
22秒前
22秒前
24秒前
26秒前
shanjianjie应助67采纳,获得10
26秒前
rehaul发布了新的文献求助10
27秒前
27秒前
zhh发布了新的文献求助10
28秒前
水博士发布了新的文献求助10
29秒前
29秒前
丙烯酸树脂完成签到,获得积分10
29秒前
Orange应助听风采纳,获得10
30秒前
zy发布了新的文献求助10
30秒前
大鸡腿发布了新的文献求助10
31秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334447
求助须知:如何正确求助?哪些是违规求助? 2963653
关于积分的说明 8610845
捐赠科研通 2642632
什么是DOI,文献DOI怎么找? 1446831
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658611