Specificity-Aware Federated Learning With Dynamic Feature Fusion Network for Imbalanced Medical Image Classification

计算机科学 人工智能 特征(语言学) 机器学习 模式识别(心理学) 上下文图像分类 特征提取 图像(数学) 数据挖掘 哲学 语言学
作者
Guanghui Yue,Peishan Wei,Tianwei Zhou,Youyi Song,Cheng Zhao,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6373-6383 被引量:16
标识
DOI:10.1109/jbhi.2023.3319516
摘要

Recently, federated learning has become a powerful technique for medical image classification due to its ability to utilize datasets from multiple clinical clients while satisfying privacy constraints. However, there are still some obstacles in federated learning. Firstly, most existing methods directly average the model parameters collected by medical clients on the server, ignoring the specificities of the local models. Secondly, class imbalance is a common issue in medical datasets. In this article, to handle these two challenges, we propose a novel specificity-aware federated learning framework that benefits from an Adaptive Aggregation Mechanism (AdapAM) and a Dynamic Feature Fusion Strategy (DFFS). Considering the specificity of each local model, we set the AdapAM on the server. The AdapAM utilizes reinforcement learning to adaptively weight and aggregate the parameters of local models based on their data distribution and performance feedback for obtaining the global model parameters. For the class imbalance in local datasets, we propose the DFFS to dynamically fuse the features of majority classes based on the imbalance ratio in the min-batch and collaborate the rest of features. We conduct extensive experiments on a dermoscopic dataset and a fundus image dataset. Experimental results show that our method can achieve state-of-the-art results in these two real-world medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘雪月完成签到,获得积分10
1秒前
深情安青应助琢钰采纳,获得10
1秒前
112发布了新的文献求助10
1秒前
2秒前
情怀应助Qssai采纳,获得10
4秒前
笑相完成签到,获得积分10
4秒前
changnan发布了新的文献求助10
4秒前
5秒前
Ni发布了新的文献求助10
6秒前
7秒前
7秒前
呼呼发布了新的文献求助10
8秒前
hulian发布了新的文献求助10
9秒前
零可林应助悬铃木采纳,获得10
9秒前
10秒前
10秒前
10秒前
临床菜鸟完成签到 ,获得积分10
10秒前
11秒前
长情萤完成签到,获得积分10
11秒前
琢钰发布了新的文献求助10
11秒前
飞虎发布了新的文献求助10
12秒前
歪比巴卜发布了新的文献求助10
12秒前
阿良发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
16秒前
16秒前
天真璎完成签到,获得积分10
16秒前
靖宇发布了新的文献求助10
16秒前
曦颜发布了新的文献求助20
17秒前
Y神完成签到 ,获得积分10
18秒前
呼呼完成签到,获得积分10
18秒前
城南花已开完成签到,获得积分10
18秒前
汉堡包应助歪比巴卜采纳,获得10
18秒前
wyh3218完成签到 ,获得积分10
19秒前
顾矜应助孤独的德地采纳,获得10
19秒前
Qssai发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527