Specificity-Aware Federated Learning With Dynamic Feature Fusion Network for Imbalanced Medical Image Classification

计算机科学 人工智能 特征(语言学) 机器学习 模式识别(心理学) 上下文图像分类 特征提取 图像(数学) 数据挖掘 哲学 语言学
作者
Guanghui Yue,Peishan Wei,Tianwei Zhou,Youyi Song,Cheng Zhao,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6373-6383 被引量:16
标识
DOI:10.1109/jbhi.2023.3319516
摘要

Recently, federated learning has become a powerful technique for medical image classification due to its ability to utilize datasets from multiple clinical clients while satisfying privacy constraints. However, there are still some obstacles in federated learning. Firstly, most existing methods directly average the model parameters collected by medical clients on the server, ignoring the specificities of the local models. Secondly, class imbalance is a common issue in medical datasets. In this article, to handle these two challenges, we propose a novel specificity-aware federated learning framework that benefits from an Adaptive Aggregation Mechanism (AdapAM) and a Dynamic Feature Fusion Strategy (DFFS). Considering the specificity of each local model, we set the AdapAM on the server. The AdapAM utilizes reinforcement learning to adaptively weight and aggregate the parameters of local models based on their data distribution and performance feedback for obtaining the global model parameters. For the class imbalance in local datasets, we propose the DFFS to dynamically fuse the features of majority classes based on the imbalance ratio in the min-batch and collaborate the rest of features. We conduct extensive experiments on a dermoscopic dataset and a fundus image dataset. Experimental results show that our method can achieve state-of-the-art results in these two real-world medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助Sunbird采纳,获得10
刚刚
刚刚
不错发布了新的文献求助10
刚刚
刚刚
1秒前
西红柿完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
氯化氟发布了新的文献求助10
1秒前
1秒前
一向年光无限身完成签到,获得积分10
1秒前
郑石发布了新的文献求助10
1秒前
ldroc完成签到,获得积分10
2秒前
2秒前
2秒前
X_发布了新的文献求助10
2秒前
MZ发布了新的文献求助10
2秒前
guo发布了新的文献求助10
3秒前
4秒前
大胆诗云发布了新的文献求助10
5秒前
玦玦天帝完成签到,获得积分10
5秒前
寻人不见发布了新的文献求助30
6秒前
Christyshan发布了新的文献求助10
6秒前
吃一斤猪头肉完成签到 ,获得积分10
6秒前
王者归来完成签到,获得积分10
6秒前
longer发布了新的文献求助10
6秒前
烟花应助Lucien采纳,获得10
6秒前
7秒前
张小哥12完成签到,获得积分10
7秒前
无花果应助guo采纳,获得10
7秒前
小二郎应助MZ采纳,获得10
7秒前
安静发布了新的文献求助10
8秒前
科研通AI2S应助赵念婉采纳,获得10
8秒前
gtx完成签到 ,获得积分10
8秒前
9秒前
小蘑菇应助刘gugu采纳,获得10
9秒前
10秒前
10秒前
10秒前
玦玦天帝发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685