Deep reinforcement learning for portfolio management

计算机科学 强化学习 文件夹 背景(考古学) 投资组合优化 项目组合管理 资产(计算机安全) 资产配置 任务(项目管理) 人工智能 机器学习 财务 经济 计算机安全 古生物学 管理 生物 项目管理
作者
Shantian Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110905-110905 被引量:12
标识
DOI:10.1016/j.knosys.2023.110905
摘要

Portfolio management facilitates trading off risks against returns for multiple financial assets. Reinforcement Learning (RL) is one of the most promising algorithms for portfolio management. However, these state-of-the-art RL algorithms only complete the task of portfolio management, i.e., acquire the different asset features of portfolio, without considering the global context information from portfolio, which leads to non-optimal portfolio representations; Moreover, the corresponding optimizations are implemented using only the loss function in the viewpoint of RL, without considering the relationships between the local asset information and global context embeddings, which leads to non-optimal portfolio policies. To deal with these issues, this paper proposes a Task-Context Mutual Actor–Critic (TC-MAC) algorithm for portfolio management. Specifically, TC-MAC algorithm is developed based on: (1) representation learning introduces a proposed Task-Context (TC) learning algorithm, which not only encodes the task (i.e., acquire different asset features) of portfolio, but also encodes the global dynamic context of portfolio, thus which helps to learn optimal portfolio embeddings; (2) policy learning introduces a proposed Mutual Actor–Critic (MAC) framework, which can measure the relationships between local embedding of each asset and global context embeddings by maximizing mutual information, the corresponding Mutual-Information loss function combines with RL loss function (i.e., Actor–Critic loss) to collectively optimize the whole algorithm, thus which helps to learn optimal portfolio policies. Experimental results on real-world datasets demonstrate the superior performance of TC-MAC algorithm over the well-known traditional portfolio methods and these state-of-the-art RL algorithms, at the same time, show its advantageous transferability.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
塔莉娅完成签到,获得积分10
2秒前
dunk芒果完成签到 ,获得积分10
5秒前
蓝胖子完成签到,获得积分10
8秒前
hs完成签到,获得积分0
8秒前
积极问晴完成签到,获得积分10
14秒前
17秒前
突突突兔完成签到 ,获得积分10
21秒前
21秒前
每天一篇文献的小王完成签到 ,获得积分10
22秒前
23秒前
panpan完成签到 ,获得积分10
23秒前
28秒前
月见完成签到 ,获得积分10
32秒前
XS_QI发布了新的文献求助10
36秒前
雾见春完成签到 ,获得积分10
37秒前
谦让的靖巧完成签到,获得积分10
39秒前
星辰大海应助风中的外套采纳,获得10
43秒前
限量版小祸害完成签到 ,获得积分10
47秒前
wenwen完成签到 ,获得积分10
48秒前
科研通AI6.2应助XS_QI采纳,获得10
48秒前
朴素的飞丹完成签到 ,获得积分10
49秒前
典雅的宝马完成签到,获得积分10
50秒前
明理芒果给明理芒果的求助进行了留言
51秒前
清爽的易真完成签到,获得积分10
51秒前
51秒前
1282941496完成签到,获得积分10
52秒前
Jasper应助书雪采纳,获得10
53秒前
墨染完成签到 ,获得积分10
57秒前
科研通AI6.2应助czx采纳,获得30
58秒前
58秒前
59秒前
米线完成签到 ,获得积分10
59秒前
虚拟的铃铛完成签到,获得积分10
1分钟前
shuo完成签到 ,获得积分20
1分钟前
1分钟前
Qvby3完成签到 ,获得积分10
1分钟前
阿兹卡班完成签到 ,获得积分10
1分钟前
魔幻妖妖发布了新的文献求助10
1分钟前
Owen应助budingman采纳,获得10
1分钟前
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847516
求助须知:如何正确求助?哪些是违规求助? 6226943
关于积分的说明 15620380
捐赠科研通 4964176
什么是DOI,文献DOI怎么找? 2676458
邀请新用户注册赠送积分活动 1621027
关于科研通互助平台的介绍 1576958