Deep reinforcement learning for portfolio management

计算机科学 强化学习 文件夹 背景(考古学) 投资组合优化 项目组合管理 资产(计算机安全) 资产配置 任务(项目管理) 人工智能 机器学习 财务 经济 计算机安全 古生物学 管理 项目管理 生物
作者
Shantian Yang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110905-110905 被引量:12
标识
DOI:10.1016/j.knosys.2023.110905
摘要

Portfolio management facilitates trading off risks against returns for multiple financial assets. Reinforcement Learning (RL) is one of the most promising algorithms for portfolio management. However, these state-of-the-art RL algorithms only complete the task of portfolio management, i.e., acquire the different asset features of portfolio, without considering the global context information from portfolio, which leads to non-optimal portfolio representations; Moreover, the corresponding optimizations are implemented using only the loss function in the viewpoint of RL, without considering the relationships between the local asset information and global context embeddings, which leads to non-optimal portfolio policies. To deal with these issues, this paper proposes a Task-Context Mutual Actor–Critic (TC-MAC) algorithm for portfolio management. Specifically, TC-MAC algorithm is developed based on: (1) representation learning introduces a proposed Task-Context (TC) learning algorithm, which not only encodes the task (i.e., acquire different asset features) of portfolio, but also encodes the global dynamic context of portfolio, thus which helps to learn optimal portfolio embeddings; (2) policy learning introduces a proposed Mutual Actor–Critic (MAC) framework, which can measure the relationships between local embedding of each asset and global context embeddings by maximizing mutual information, the corresponding Mutual-Information loss function combines with RL loss function (i.e., Actor–Critic loss) to collectively optimize the whole algorithm, thus which helps to learn optimal portfolio policies. Experimental results on real-world datasets demonstrate the superior performance of TC-MAC algorithm over the well-known traditional portfolio methods and these state-of-the-art RL algorithms, at the same time, show its advantageous transferability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助郭晓琦采纳,获得10
刚刚
夙夙完成签到,获得积分10
1秒前
孙刚发布了新的文献求助10
1秒前
quhayley发布了新的文献求助30
1秒前
晚灯君发布了新的文献求助10
2秒前
demian发布了新的文献求助10
3秒前
3秒前
3秒前
Jasper应助hp571采纳,获得10
3秒前
3秒前
天天快乐应助李治海采纳,获得10
4秒前
可达燊完成签到,获得积分10
4秒前
今后应助小怪兽采纳,获得10
5秒前
小晟完成签到,获得积分10
5秒前
小鹿呀完成签到,获得积分10
5秒前
Connie完成签到,获得积分10
5秒前
uu发布了新的文献求助10
5秒前
一只鱼的故事完成签到,获得积分10
6秒前
流星完成签到,获得积分10
7秒前
liyizhe完成签到 ,获得积分10
7秒前
7秒前
徐风年完成签到,获得积分10
8秒前
猕猴桃发布了新的文献求助30
9秒前
9秒前
刘源发布了新的文献求助10
9秒前
10秒前
glanceofwind完成签到 ,获得积分10
10秒前
可达燊发布了新的文献求助50
10秒前
Akim应助kk采纳,获得10
10秒前
传奇3应助爱听歌的寄云采纳,获得10
11秒前
xW12123完成签到,获得积分10
11秒前
JamesPei应助三三采纳,获得10
11秒前
11秒前
11秒前
12秒前
hp571完成签到,获得积分10
13秒前
打击8完成签到 ,获得积分10
13秒前
baobao完成签到,获得积分10
13秒前
思源应助爱吃香菜采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635