Deep reinforcement learning for portfolio management

计算机科学 强化学习 文件夹 背景(考古学) 投资组合优化 项目组合管理 资产(计算机安全) 资产配置 任务(项目管理) 人工智能 机器学习 财务 经济 计算机安全 古生物学 管理 生物 项目管理
作者
Shantian Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110905-110905 被引量:3
标识
DOI:10.1016/j.knosys.2023.110905
摘要

Portfolio management facilitates trading off risks against returns for multiple financial assets. Reinforcement Learning (RL) is one of the most promising algorithms for portfolio management. However, these state-of-the-art RL algorithms only complete the task of portfolio management, i.e., acquire the different asset features of portfolio, without considering the global context information from portfolio, which leads to non-optimal portfolio representations; Moreover, the corresponding optimizations are implemented using only the loss function in the viewpoint of RL, without considering the relationships between the local asset information and global context embeddings, which leads to non-optimal portfolio policies. To deal with these issues, this paper proposes a Task-Context Mutual Actor–Critic (TC-MAC) algorithm for portfolio management. Specifically, TC-MAC algorithm is developed based on: (1) representation learning introduces a proposed Task-Context (TC) learning algorithm, which not only encodes the task (i.e., acquire different asset features) of portfolio, but also encodes the global dynamic context of portfolio, thus which helps to learn optimal portfolio embeddings; (2) policy learning introduces a proposed Mutual Actor–Critic (MAC) framework, which can measure the relationships between local embedding of each asset and global context embeddings by maximizing mutual information, the corresponding Mutual-Information loss function combines with RL loss function (i.e., Actor–Critic loss) to collectively optimize the whole algorithm, thus which helps to learn optimal portfolio policies. Experimental results on real-world datasets demonstrate the superior performance of TC-MAC algorithm over the well-known traditional portfolio methods and these state-of-the-art RL algorithms, at the same time, show its advantageous transferability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史萌完成签到,获得积分10
刚刚
刚刚
1秒前
小如要努力完成签到,获得积分10
1秒前
1秒前
小白兔完成签到,获得积分10
2秒前
wz5582完成签到,获得积分10
2秒前
2秒前
爆米花应助雷豪采纳,获得10
2秒前
偶然的风41177完成签到,获得积分10
2秒前
2秒前
SciGPT应助木风落采纳,获得10
3秒前
3秒前
栗子完成签到,获得积分20
5秒前
Kevin完成签到,获得积分10
6秒前
善良烧鹅发布了新的文献求助10
6秒前
香蕉觅云应助joplinJIA采纳,获得10
6秒前
lolo发布了新的文献求助10
6秒前
AndyLin发布了新的文献求助10
7秒前
keyangouderic完成签到,获得积分10
7秒前
8秒前
ninini发布了新的文献求助10
9秒前
11111发布了新的文献求助10
9秒前
栗子发布了新的文献求助10
9秒前
困困困困完成签到 ,获得积分10
9秒前
一一应助Mr049采纳,获得10
10秒前
lcy发布了新的文献求助10
10秒前
seeeee发布了新的文献求助10
10秒前
wuming完成签到,获得积分10
10秒前
一小只完成签到,获得积分10
11秒前
浮名半生完成签到,获得积分10
12秒前
13秒前
ding应助LT采纳,获得10
13秒前
敏感的天空完成签到,获得积分10
14秒前
英姑应助苦哈哈采纳,获得10
16秒前
11111完成签到,获得积分20
16秒前
18秒前
18秒前
19秒前
Nyota应助栗子采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135885
求助须知:如何正确求助?哪些是违规求助? 2786652
关于积分的说明 7778992
捐赠科研通 2442900
什么是DOI,文献DOI怎么找? 1298731
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870