扩散
计算模型
计算机科学
人工智能
系统生物学
生成语法
生物信息学
噪音(视频)
机器学习
数据科学
理论计算机科学
生物
图像(数学)
物理
热力学
作者
Zhiye Guo,Jian Liu,Yanli Wang,Mengrui Chen,Duolin Wang,Dong Xu,Jianlin Cheng
标识
DOI:10.1038/s44222-023-00114-9
摘要
Denoising diffusion models embody a type of generative artificial intelligence that can be applied in computer vision, natural language processing and bioinformatics. In this Review, we introduce the key concepts and theoretical foundations of three diffusion modelling frameworks (denoising diffusion probabilistic models, noise-conditioned scoring networks and score stochastic differential equations). We then explore their applications in bioinformatics and computational biology, including protein design and generation, drug and small-molecule design, protein–ligand interaction modelling, cryo-electron microscopy image data analysis and single-cell data analysis. Finally, we highlight open-source diffusion model tools and consider the future applications of diffusion models in bioinformatics. Diffusion models are deep-learning-based generative models that can generate new data from input parameters. This Review discusses applications of diffusion models in bioinformatics and computational biology.
科研通智能强力驱动
Strongly Powered by AbleSci AI