Chemo-mechanical failure of solid composite cathodes accelerated by high-strain anodes in all-solid-state batteries

材料科学 阳极 阴极 复合数 固态 拉伤 复合材料 工程物理 电极 电气工程 化学 物理化学 工程类 医学 内科学
作者
Junhee Kang,Hong Rim Shin,Jonghyeok Yun,Siwon Kim,Beomsu Kim,Kyeongsu Lee,Yongjun Lim,Jong‐Won Lee
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:63: 103049-103049 被引量:8
标识
DOI:10.1016/j.ensm.2023.103049
摘要

Large volume changes in Li-based anodes during repeated charge-discharge cycling, which can exert additional mechanical stresses on cell components, remain a significant bottleneck for realizing all-solid-state batteries (ASSBs). While a few studies have reported the mechanical deformation of solid electrolyte layers induced by the volume changes in anodes, the possible degradation of composite cathodes has been largely overlooked. Herein, we present a comparative experimental-simulation study of sulfide-based ASSBs assembled with high-strain (Li-In) and zero-strain (Li4Ti5O12 (LTO)) anodes to understand the impact of anode volume changes on the chemo-mechanical degradation of composite cathodes. The Li-In cell suffers from severe capacity loss after ∼120 cycles, whereas the LTO cell shows a capacity retention as high as 76 % over 200 cycles. In-depth chemical and microstructural analyses, coupled with impedance decoupling and mechanical simulations, reveal that the combination of the cathode volume changes and the high-strain Li-In anode perturbs the structural integrity of the LiNi0.88Co0.09Al0.03O2 (NCA) composite cathode and facilitates "dynamic" contacts among the cathode constituents upon repeated cycling. This leads to enhanced parasitic interfacial reactions, as evidenced by the increased amount of resistive phases in the cathode. The resulting chemically/electrochemically heterogeneous interfaces between the NCA and Li6PS5Cl lead to accelerated cracking of the NCA aggregates in the presence of anode-induced stresses. This study highlights the accelerated degradation of composite cathodes driven by high-strain anodes and provides insights into the design of ASSBs with long cycle lifetimes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清一发布了新的文献求助10
刚刚
小白鼠发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
无问西东发布了新的文献求助10
2秒前
郝好东发布了新的文献求助10
2秒前
Labubuz发布了新的文献求助10
2秒前
3秒前
3秒前
zhangzhang完成签到,获得积分10
3秒前
11发布了新的文献求助10
4秒前
4秒前
星辰大海应助Yixuan_Zou采纳,获得10
4秒前
即兴完成签到,获得积分10
4秒前
猫咪完成签到,获得积分10
5秒前
5秒前
CNS发布了新的文献求助10
5秒前
5114完成签到,获得积分10
5秒前
顺心紫翠发布了新的文献求助10
5秒前
6秒前
爱笑寒凝发布了新的文献求助10
6秒前
hao完成签到,获得积分10
6秒前
隐形曼青应助Lesley采纳,获得10
7秒前
玥越发布了新的文献求助10
7秒前
大气凌柏发布了新的文献求助10
7秒前
所所应助眯眯眼的世界采纳,获得10
7秒前
李健的小迷弟应助zhendezy采纳,获得10
8秒前
多情的竺完成签到,获得积分10
9秒前
一叶孤舟发布了新的文献求助10
9秒前
9秒前
李爱国应助11采纳,获得10
9秒前
10秒前
bkagyin应助田富贵采纳,获得10
10秒前
CNS完成签到,获得积分10
10秒前
czq发布了新的文献求助10
11秒前
11秒前
坦率的苡发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002