Optimizing oxygen vacancies through grain boundary engineering to enhance electrocatalytic nitrogen reduction

催化作用 材料科学 法拉第效率 电解质 晶界 析氧 氮气 化学工程 氧气 空位缺陷 X射线光电子能谱 电子转移 电解 电化学 化学 电极 冶金 物理化学 微观结构 结晶学 工程类 生物化学 有机化学
作者
Xiu Zhong,Enxian Yuan,Fu Yang,Yang Liu,Hao Lü,Jun Yang,Fei Gao,Yu Zhou,Jianming Pan,Jiawei Zhu,Chao Yu,Chengzhang Zhu,Aihua Yuan,Edison Huixiang Ang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (40) 被引量:70
标识
DOI:10.1073/pnas.2306673120
摘要

Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO 2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO 2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO 2 /C 700 , outperformed commercial MoO 2 and state-of-the-art N 2 reduction catalysts, with NH 3 yield and Faradic efficiency of 173.7 μg h −1 mg −1 cat and 27.6%, respectively, under − 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N 2 adsorption over oxygen vacancy, revealing the dominant interplay of N 2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N 2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qing发布了新的文献求助30
1秒前
yfn完成签到,获得积分10
1秒前
WTT完成签到,获得积分10
1秒前
李宗洋发布了新的文献求助10
2秒前
可爱的青枫完成签到,获得积分20
2秒前
神明完成签到 ,获得积分10
3秒前
3秒前
4秒前
phil发布了新的文献求助10
5秒前
5秒前
5秒前
小韩完成签到,获得积分10
6秒前
正直的曼香完成签到 ,获得积分10
6秒前
6秒前
7秒前
玄风举报尘曦求助涉嫌违规
7秒前
第二支羽毛完成签到,获得积分10
7秒前
俭朴凝旋应助WNL采纳,获得10
8秒前
GPTea应助田字格采纳,获得20
8秒前
LLCHEN完成签到 ,获得积分10
9秒前
liney发布了新的文献求助10
9秒前
ce发布了新的文献求助10
9秒前
11秒前
orange发布了新的文献求助30
11秒前
土豪的易文完成签到,获得积分10
11秒前
qing完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
S.完成签到,获得积分10
12秒前
治水发布了新的文献求助20
12秒前
yahonyoyoyo发布了新的文献求助20
12秒前
MOLLY完成签到 ,获得积分10
12秒前
负责的高烽完成签到,获得积分10
12秒前
12秒前
细心天德完成签到,获得积分10
13秒前
cxy完成签到 ,获得积分10
13秒前
落樱幻梦染星尘完成签到,获得积分10
14秒前
14秒前
15秒前
嬴炎发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758