Optimizing oxygen vacancies through grain boundary engineering to enhance electrocatalytic nitrogen reduction

催化作用 材料科学 法拉第效率 电解质 晶界 析氧 氮气 化学工程 氧气 空位缺陷 X射线光电子能谱 电子转移 电解 电化学 化学 电极 冶金 物理化学 微观结构 结晶学 工程类 生物化学 有机化学
作者
Xiu Zhong,Enxian Yuan,Fu Yang,Yang Liu,Hao Lü,Jun Yang,Fei Gao,Yu Zhou,Jianming Pan,Jiawei Zhu,Chao Yu,Chengzhang Zhu,Aihua Yuan,Edison Huixiang Ang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (40) 被引量:70
标识
DOI:10.1073/pnas.2306673120
摘要

Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO 2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO 2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO 2 /C 700 , outperformed commercial MoO 2 and state-of-the-art N 2 reduction catalysts, with NH 3 yield and Faradic efficiency of 173.7 μg h −1 mg −1 cat and 27.6%, respectively, under − 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N 2 adsorption over oxygen vacancy, revealing the dominant interplay of N 2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N 2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
爆米花应助清颜采纳,获得10
2秒前
2秒前
乐观黎云完成签到,获得积分10
3秒前
杏里关注了科研通微信公众号
3秒前
星辰大海应助Huang采纳,获得10
3秒前
默默善愁发布了新的文献求助50
4秒前
4秒前
Alpha应助怡然的寻桃采纳,获得10
4秒前
大力帽子应助Haj1mi采纳,获得10
4秒前
深情安青应助ycy采纳,获得10
4秒前
领导范儿应助儒雅致远采纳,获得10
4秒前
泡泡儿发布了新的文献求助10
5秒前
阳光的桐完成签到,获得积分10
6秒前
7秒前
岳维芸发布了新的文献求助10
7秒前
好久不见应助听话的寒烟采纳,获得30
7秒前
xixi发布了新的文献求助30
8秒前
shushu完成签到 ,获得积分10
8秒前
完美世界应助yuaner采纳,获得10
8秒前
libe发布了新的文献求助10
9秒前
朴素的怜雪完成签到,获得积分10
9秒前
害怕的靖巧完成签到,获得积分10
10秒前
10秒前
wanci应助独特的采纳,获得10
11秒前
tiptip应助Wu采纳,获得10
11秒前
PAPA完成签到,获得积分10
12秒前
Orange应助renwoxing采纳,获得10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
友好锦程完成签到,获得积分20
15秒前
慕青应助弯刀划过红玫瑰采纳,获得10
15秒前
hyf发布了新的文献求助10
17秒前
天天快乐应助求知的周采纳,获得10
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137