Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy Related Bio-Marker Detection

糖尿病性视网膜病变 计算机科学 编码器 缩放比例 解码方法 人工智能 医学 糖尿病 算法 数学 内分泌学 操作系统 几何学
作者
Dewei Yi,Petar Baltov,Yining Hua,Sam Philip,Pradip Kumar Sharma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1959-1970 被引量:5
标识
DOI:10.1109/jbhi.2023.3313785
摘要

Biomedical image segmentation plays an important role in Diabetic Retinopathy (DR)-related biomarker detection. DR is an ocular disease that affects the retina in people with diabetes and could lead to visual impairment if management measures are not taken in a timely manner. In DR screening programs, the presence and severity of DR are identified and classified based on various microvascular lesions detected by qualified ophthalmic screeners. Such a detection process is time-consuming and error-prone, given the small size of the microvascular lesions and the volume of images, especially with the increasing prevalence of diabetes. Automated image processing using deep learning methods is recognized as a promising approach to support diabetic retinopathy screening. In this paper, we propose a novel compound scaling encoder-decoder network architecture to improve the accuracy and running efficiency of microvascular lesion segmentation. In the encoder phase, we develop a lightweight encoder to speed up the training process, where the encoder network is scaled up in depth, width, and resolution dimensions. In the decoder phase, an attention mechanism is introduced to yield higher accuracy. Specifically, we employ Concurrent Spatial and Channel Squeeze and Channel Excitation (scSE) blocks to fully utilise both spatial and channel-wise information. Additionally, a compound loss function is incorporated with transfer learning to handle the problem of imbalanced data and further improve performance. To assess performance, our method is evaluated on two large-scale lesion segmentation datasets: DDR and FGADR datasets. Experimental results demonstrate the superiority of our method compared to other competent methods. Our codes are available at https://github.com/DeweiYi/CoSED-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洺全发布了新的文献求助10
1秒前
尤之尤之发布了新的文献求助10
1秒前
2秒前
2秒前
乐枳完成签到 ,获得积分10
2秒前
2秒前
御风关注了科研通微信公众号
3秒前
能干易文完成签到,获得积分10
3秒前
4秒前
十七应助自觉冷松采纳,获得10
4秒前
4秒前
4秒前
5yo完成签到,获得积分10
4秒前
陈小青发布了新的文献求助10
4秒前
5秒前
研友_LBaRl8完成签到,获得积分10
5秒前
tiddler完成签到,获得积分10
5秒前
5秒前
Orange应助Jackson采纳,获得10
6秒前
像个间谍完成签到 ,获得积分10
6秒前
6秒前
田様应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
冷静剑成发布了新的文献求助10
7秒前
7秒前
二三应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
劲秉应助科研通管家采纳,获得20
8秒前
8秒前
yhxs发布了新的文献求助10
8秒前
8秒前
quanjiazhi发布了新的文献求助10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助清脆慕山采纳,获得10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469240
求助须知:如何正确求助?哪些是违规求助? 3062268
关于积分的说明 9078513
捐赠科研通 2752652
什么是DOI,文献DOI怎么找? 1510516
科研通“疑难数据库(出版商)”最低求助积分说明 697909
邀请新用户注册赠送积分活动 697783