清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy Related Bio-Marker Detection

糖尿病性视网膜病变 计算机科学 编码器 缩放比例 解码方法 人工智能 医学 糖尿病 算法 数学 内分泌学 操作系统 几何学
作者
Dewei Yi,Petar Baltov,Yining Hua,Sam Philip,Pradip Kumar Sharma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1959-1970 被引量:5
标识
DOI:10.1109/jbhi.2023.3313785
摘要

Biomedical image segmentation plays an important role in Diabetic Retinopathy (DR)-related biomarker detection. DR is an ocular disease that affects the retina in people with diabetes and could lead to visual impairment if management measures are not taken in a timely manner. In DR screening programs, the presence and severity of DR are identified and classified based on various microvascular lesions detected by qualified ophthalmic screeners. Such a detection process is time-consuming and error-prone, given the small size of the microvascular lesions and the volume of images, especially with the increasing prevalence of diabetes. Automated image processing using deep learning methods is recognized as a promising approach to support diabetic retinopathy screening. In this paper, we propose a novel compound scaling encoder-decoder network architecture to improve the accuracy and running efficiency of microvascular lesion segmentation. In the encoder phase, we develop a lightweight encoder to speed up the training process, where the encoder network is scaled up in depth, width, and resolution dimensions. In the decoder phase, an attention mechanism is introduced to yield higher accuracy. Specifically, we employ Concurrent Spatial and Channel Squeeze and Channel Excitation (scSE) blocks to fully utilise both spatial and channel-wise information. Additionally, a compound loss function is incorporated with transfer learning to handle the problem of imbalanced data and further improve performance. To assess performance, our method is evaluated on two large-scale lesion segmentation datasets: DDR and FGADR datasets. Experimental results demonstrate the superiority of our method compared to other competent methods. Our codes are available at https://github.com/DeweiYi/CoSED-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助30
29秒前
35秒前
dablack发布了新的文献求助10
38秒前
armpit发布了新的文献求助10
41秒前
Ivan发布了新的文献求助10
1分钟前
1分钟前
大模型应助飞快的冷亦采纳,获得10
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Akim应助supermaltose采纳,获得10
1分钟前
方白秋完成签到,获得积分0
1分钟前
栾小鱼完成签到,获得积分10
2分钟前
Ivan完成签到,获得积分10
2分钟前
可爱的函函应助紫荆采纳,获得10
3分钟前
3分钟前
w40701完成签到,获得积分10
3分钟前
芹123发布了新的文献求助10
3分钟前
紫荆发布了新的文献求助10
3分钟前
科研小白完成签到,获得积分10
4分钟前
芹123发布了新的文献求助10
4分钟前
超体完成签到 ,获得积分10
4分钟前
芹123完成签到,获得积分10
4分钟前
5分钟前
5分钟前
老石完成签到 ,获得积分10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
11发布了新的文献求助10
5分钟前
123完成签到 ,获得积分10
5分钟前
大医仁心完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
ukz37752发布了新的文献求助200
6分钟前
6分钟前
赘婿应助科研通管家采纳,获得50
6分钟前
6分钟前
nixgnef发布了新的文献求助10
6分钟前
科研通AI5应助armpit采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926803
求助须知:如何正确求助?哪些是违规求助? 4196382
关于积分的说明 13032624
捐赠科研通 3968735
什么是DOI,文献DOI怎么找? 2175117
邀请新用户注册赠送积分活动 1192274
关于科研通互助平台的介绍 1102675