亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy Related Bio-Marker Detection

糖尿病性视网膜病变 计算机科学 编码器 缩放比例 解码方法 人工智能 医学 糖尿病 算法 数学 内分泌学 操作系统 几何学
作者
Dewei Yi,Petar Baltov,Yining Hua,Sam Philip,Pradip Kumar Sharma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1959-1970 被引量:5
标识
DOI:10.1109/jbhi.2023.3313785
摘要

Biomedical image segmentation plays an important role in Diabetic Retinopathy (DR)-related biomarker detection. DR is an ocular disease that affects the retina in people with diabetes and could lead to visual impairment if management measures are not taken in a timely manner. In DR screening programs, the presence and severity of DR are identified and classified based on various microvascular lesions detected by qualified ophthalmic screeners. Such a detection process is time-consuming and error-prone, given the small size of the microvascular lesions and the volume of images, especially with the increasing prevalence of diabetes. Automated image processing using deep learning methods is recognized as a promising approach to support diabetic retinopathy screening. In this paper, we propose a novel compound scaling encoder-decoder network architecture to improve the accuracy and running efficiency of microvascular lesion segmentation. In the encoder phase, we develop a lightweight encoder to speed up the training process, where the encoder network is scaled up in depth, width, and resolution dimensions. In the decoder phase, an attention mechanism is introduced to yield higher accuracy. Specifically, we employ Concurrent Spatial and Channel Squeeze and Channel Excitation (scSE) blocks to fully utilise both spatial and channel-wise information. Additionally, a compound loss function is incorporated with transfer learning to handle the problem of imbalanced data and further improve performance. To assess performance, our method is evaluated on two large-scale lesion segmentation datasets: DDR and FGADR datasets. Experimental results demonstrate the superiority of our method compared to other competent methods. Our codes are available at https://github.com/DeweiYi/CoSED-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
狗头发布了新的文献求助10
27秒前
会飞的蜗牛完成签到,获得积分10
31秒前
WerWu完成签到,获得积分0
42秒前
zzy完成签到 ,获得积分10
56秒前
Jasper应助科研通管家采纳,获得10
59秒前
鬼笔环肽完成签到,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
2分钟前
baibai发布了新的文献求助10
2分钟前
2分钟前
2分钟前
清秀灵薇完成签到,获得积分10
2分钟前
jerry完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
欣欣完成签到 ,获得积分10
4分钟前
houshyari完成签到,获得积分10
4分钟前
一彤展翅完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
浮游应助ali777采纳,获得10
5分钟前
ali777完成签到,获得积分20
5分钟前
科研通AI2S应助GIA采纳,获得10
5分钟前
444完成签到,获得积分10
5分钟前
6分钟前
小房子完成签到 ,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
乐乐应助风中巧曼采纳,获得10
7分钟前
7分钟前
风中巧曼发布了新的文献求助10
7分钟前
可爱的函函应助LIXI采纳,获得30
7分钟前
Akim应助ceeray23采纳,获得20
7分钟前
GIA完成签到,获得积分10
7分钟前
duan完成签到 ,获得积分10
7分钟前
LIXI完成签到,获得积分20
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407926
求助须知:如何正确求助?哪些是违规求助? 4525379
关于积分的说明 14101723
捐赠科研通 4439244
什么是DOI,文献DOI怎么找? 2436671
邀请新用户注册赠送积分活动 1428645
关于科研通互助平台的介绍 1406740