已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy Related Bio-Marker Detection

糖尿病性视网膜病变 计算机科学 编码器 缩放比例 解码方法 人工智能 医学 糖尿病 算法 数学 内分泌学 操作系统 几何学
作者
Dewei Yi,Petar Baltov,Yining Hua,Sam Philip,Pradip Kumar Sharma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1959-1970 被引量:5
标识
DOI:10.1109/jbhi.2023.3313785
摘要

Biomedical image segmentation plays an important role in Diabetic Retinopathy (DR)-related biomarker detection. DR is an ocular disease that affects the retina in people with diabetes and could lead to visual impairment if management measures are not taken in a timely manner. In DR screening programs, the presence and severity of DR are identified and classified based on various microvascular lesions detected by qualified ophthalmic screeners. Such a detection process is time-consuming and error-prone, given the small size of the microvascular lesions and the volume of images, especially with the increasing prevalence of diabetes. Automated image processing using deep learning methods is recognized as a promising approach to support diabetic retinopathy screening. In this paper, we propose a novel compound scaling encoder-decoder network architecture to improve the accuracy and running efficiency of microvascular lesion segmentation. In the encoder phase, we develop a lightweight encoder to speed up the training process, where the encoder network is scaled up in depth, width, and resolution dimensions. In the decoder phase, an attention mechanism is introduced to yield higher accuracy. Specifically, we employ Concurrent Spatial and Channel Squeeze and Channel Excitation (scSE) blocks to fully utilise both spatial and channel-wise information. Additionally, a compound loss function is incorporated with transfer learning to handle the problem of imbalanced data and further improve performance. To assess performance, our method is evaluated on two large-scale lesion segmentation datasets: DDR and FGADR datasets. Experimental results demonstrate the superiority of our method compared to other competent methods. Our codes are available at https://github.com/DeweiYi/CoSED-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任无施发布了新的文献求助10
刚刚
2秒前
梦梦关注了科研通微信公众号
5秒前
小橘子吃傻子完成签到,获得积分10
6秒前
斯文败类应助liwen采纳,获得10
8秒前
9秒前
6666应助佛光辉采纳,获得10
9秒前
李健的小迷弟应助任无施采纳,获得10
11秒前
11秒前
桐桐应助海大彭于晏采纳,获得10
12秒前
少年锦时完成签到,获得积分10
12秒前
白泽发布了新的文献求助10
15秒前
15秒前
lili发布了新的文献求助10
16秒前
16秒前
EternalStrider完成签到,获得积分10
18秒前
梦梦发布了新的文献求助10
19秒前
cmf完成签到 ,获得积分10
23秒前
24秒前
Criminology34应助伊力扎提采纳,获得10
24秒前
26秒前
xiaoguoxiaoguo完成签到,获得积分10
28秒前
科研通AI6应助inRe采纳,获得30
28秒前
lululemontree发布了新的文献求助10
28秒前
30秒前
英姑应助开放的千青采纳,获得10
30秒前
白泽完成签到,获得积分10
35秒前
cenghao给cenghao的求助进行了留言
36秒前
37秒前
lili完成签到,获得积分10
39秒前
41秒前
qing_li完成签到,获得积分10
42秒前
42秒前
miaomiao123完成签到 ,获得积分10
43秒前
liwen发布了新的文献求助10
44秒前
勤劳凌青发布了新的文献求助20
44秒前
小蛇玩完成签到,获得积分10
44秒前
小二郎应助佛光辉采纳,获得10
45秒前
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910