Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy Related Bio-Marker Detection

糖尿病性视网膜病变 计算机科学 编码器 缩放比例 解码方法 人工智能 医学 糖尿病 算法 数学 内分泌学 操作系统 几何学
作者
Dewei Yi,Petar Baltov,Yining Hua,Sam Philip,Pradip Kumar Sharma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1959-1970 被引量:5
标识
DOI:10.1109/jbhi.2023.3313785
摘要

Biomedical image segmentation plays an important role in Diabetic Retinopathy (DR)-related biomarker detection. DR is an ocular disease that affects the retina in people with diabetes and could lead to visual impairment if management measures are not taken in a timely manner. In DR screening programs, the presence and severity of DR are identified and classified based on various microvascular lesions detected by qualified ophthalmic screeners. Such a detection process is time-consuming and error-prone, given the small size of the microvascular lesions and the volume of images, especially with the increasing prevalence of diabetes. Automated image processing using deep learning methods is recognized as a promising approach to support diabetic retinopathy screening. In this paper, we propose a novel compound scaling encoder-decoder network architecture to improve the accuracy and running efficiency of microvascular lesion segmentation. In the encoder phase, we develop a lightweight encoder to speed up the training process, where the encoder network is scaled up in depth, width, and resolution dimensions. In the decoder phase, an attention mechanism is introduced to yield higher accuracy. Specifically, we employ Concurrent Spatial and Channel Squeeze and Channel Excitation (scSE) blocks to fully utilise both spatial and channel-wise information. Additionally, a compound loss function is incorporated with transfer learning to handle the problem of imbalanced data and further improve performance. To assess performance, our method is evaluated on two large-scale lesion segmentation datasets: DDR and FGADR datasets. Experimental results demonstrate the superiority of our method compared to other competent methods. Our codes are available at https://github.com/DeweiYi/CoSED-Net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
young发布了新的文献求助10
刚刚
1秒前
李亚静完成签到,获得积分10
1秒前
1秒前
1秒前
典雅芫完成签到,获得积分10
1秒前
浮游应助杨yyyy采纳,获得10
1秒前
NexusExplorer应助杨yyyy采纳,获得10
1秒前
JamesPei应助Layla采纳,获得10
1秒前
翻羽发布了新的文献求助10
2秒前
2秒前
2秒前
橘子完成签到,获得积分10
2秒前
susu完成签到,获得积分10
2秒前
活泼的石头完成签到,获得积分10
2秒前
充电宝应助随风采纳,获得10
3秒前
bkagyin应助TMAC采纳,获得10
3秒前
4秒前
loin发布了新的文献求助10
5秒前
ju00发布了新的文献求助10
5秒前
心酒为友完成签到,获得积分10
5秒前
5秒前
春日无尾熊完成签到 ,获得积分10
5秒前
JamesPei应助苗儿采纳,获得10
5秒前
甜甜一刀完成签到,获得积分10
5秒前
朴素亦绿发布了新的文献求助10
5秒前
mia完成签到,获得积分20
5秒前
6秒前
冷静宛海完成签到,获得积分10
7秒前
Foalphaz发布了新的文献求助10
7秒前
李爱国应助yangxt-iga采纳,获得10
7秒前
陈文娜发布了新的文献求助10
8秒前
淮安重午发布了新的文献求助10
8秒前
鲨鱼完成签到,获得积分10
8秒前
8秒前
8秒前
zxx完成签到,获得积分10
8秒前
9秒前
9秒前
shang发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606