亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy Related Bio-Marker Detection

糖尿病性视网膜病变 计算机科学 编码器 缩放比例 解码方法 人工智能 医学 糖尿病 算法 数学 内分泌学 操作系统 几何学
作者
Dewei Yi,Petar Baltov,Yining Hua,Sam Philip,Pradip Kumar Sharma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1959-1970 被引量:5
标识
DOI:10.1109/jbhi.2023.3313785
摘要

Biomedical image segmentation plays an important role in Diabetic Retinopathy (DR)-related biomarker detection. DR is an ocular disease that affects the retina in people with diabetes and could lead to visual impairment if management measures are not taken in a timely manner. In DR screening programs, the presence and severity of DR are identified and classified based on various microvascular lesions detected by qualified ophthalmic screeners. Such a detection process is time-consuming and error-prone, given the small size of the microvascular lesions and the volume of images, especially with the increasing prevalence of diabetes. Automated image processing using deep learning methods is recognized as a promising approach to support diabetic retinopathy screening. In this paper, we propose a novel compound scaling encoder-decoder network architecture to improve the accuracy and running efficiency of microvascular lesion segmentation. In the encoder phase, we develop a lightweight encoder to speed up the training process, where the encoder network is scaled up in depth, width, and resolution dimensions. In the decoder phase, an attention mechanism is introduced to yield higher accuracy. Specifically, we employ Concurrent Spatial and Channel Squeeze and Channel Excitation (scSE) blocks to fully utilise both spatial and channel-wise information. Additionally, a compound loss function is incorporated with transfer learning to handle the problem of imbalanced data and further improve performance. To assess performance, our method is evaluated on two large-scale lesion segmentation datasets: DDR and FGADR datasets. Experimental results demonstrate the superiority of our method compared to other competent methods. Our codes are available at https://github.com/DeweiYi/CoSED-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
xiao金完成签到,获得积分10
24秒前
53秒前
直率的笑翠完成签到 ,获得积分10
54秒前
fire完成签到 ,获得积分10
57秒前
1分钟前
嗯对完成签到 ,获得积分10
1分钟前
一一发布了新的文献求助10
1分钟前
1分钟前
邓权发布了新的文献求助10
1分钟前
左左应助一一采纳,获得10
1分钟前
江姜酱先生应助qi采纳,获得10
1分钟前
邓权完成签到,获得积分10
1分钟前
星辰大海应助一一采纳,获得10
2分钟前
CodeCraft应助shellyAPTX4869采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
奔跑的小熊完成签到 ,获得积分10
3分钟前
左左发布了新的文献求助50
3分钟前
Orange应助shellyAPTX4869采纳,获得10
3分钟前
笑点低的孤丹完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
背后梦安发布了新的文献求助30
3分钟前
李子不是杏完成签到 ,获得积分10
4分钟前
科研duangduang完成签到 ,获得积分10
4分钟前
顾矜应助shellyAPTX4869采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
无花果应助shellyAPTX4869采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968442
求助须知:如何正确求助?哪些是违规求助? 3513259
关于积分的说明 11167119
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794295
邀请新用户注册赠送积分活动 875027
科研通“疑难数据库(出版商)”最低求助积分说明 804629