亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-driven MRI trigeminal nerve segmentation with SEVB-net

分割 三叉神经痛 计算机科学 磁共振成像 瓶颈 人工智能 网(多面体) 深度学习 模式识别(心理学) 算法 医学 放射科 数学 外科 几何学 嵌入式系统
作者
Chuan Zhang,Man Li,Zheng Luo,Ruhui Xiao,Bing Li,Jian Shi,Chang Zeng,Baoqing Sun,Xiaoxue Xu,Hua-Yuan Yang
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17
标识
DOI:10.3389/fnins.2023.1265032
摘要

Purpose Trigeminal neuralgia (TN) poses significant challenges in its diagnosis and treatment due to its extreme pain. Magnetic resonance imaging (MRI) plays a crucial role in diagnosing TN and understanding its pathogenesis. Manual delineation of the trigeminal nerve in volumetric images is time-consuming and subjective. This study introduces a Squeeze and Excitation with BottleNeck V-Net (SEVB-Net), a novel approach for the automatic segmentation of the trigeminal nerve in three-dimensional T2 MRI volumes. Methods We enrolled 88 patients with trigeminal neuralgia and 99 healthy volunteers, dividing them into training and testing groups. The SEVB-Net was designed for end-to-end training, taking three-dimensional T2 images as input and producing a segmentation volume of the same size. We assessed the performance of the basic V-Net, nnUNet, and SEVB-Net models by calculating the Dice similarity coefficient (DSC), sensitivity, precision, and network complexity. Additionally, we used the Mann–Whitney U test to compare the time required for manual segmentation and automatic segmentation with manual modification. Results In the testing group, the experimental results demonstrated that the proposed method achieved state-of-the-art performance. SEVB-Net combined with the ωDoubleLoss loss function achieved a DSC ranging from 0.6070 to 0.7923. SEVB-Net combined with the ωDoubleLoss method and nnUNet combined with the DoubleLoss method, achieved DSC, sensitivity, and precision values exceeding 0.7. However, SEVB-Net significantly reduced the number of parameters (2.20 M), memory consumption (11.41 MB), and model size (17.02 MB), resulting in improved computation and forward time compared with nnUNet. The difference in average time between manual segmentation and automatic segmentation with manual modification for both radiologists was statistically significant ( p < 0.001). Conclusion The experimental results demonstrate that the proposed method can automatically segment the root and three main branches of the trigeminal nerve in three-dimensional T2 images. SEVB-Net, compared with the basic V-Net model, showed improved segmentation performance and achieved a level similar to nnUNet. The segmentation volumes of both SEVB-Net and nnUNet aligned with expert annotations but SEVB-Net displayed a more lightweight feature.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助单薄的夜南采纳,获得10
4秒前
4秒前
8秒前
9秒前
shame完成签到 ,获得积分0
10秒前
12秒前
16秒前
16秒前
LavenDell199119关注了科研通微信公众号
24秒前
小摩尔完成签到 ,获得积分10
29秒前
郑经人完成签到,获得积分20
31秒前
33秒前
qqq完成签到,获得积分10
33秒前
盛事不朽完成签到 ,获得积分10
35秒前
41秒前
赘婿应助科研通管家采纳,获得10
45秒前
上官若男应助科研通管家采纳,获得10
45秒前
英姑应助科研通管家采纳,获得10
45秒前
香蕉觅云应助科研通管家采纳,获得10
45秒前
wz发布了新的文献求助10
47秒前
Adc应助5t5采纳,获得10
49秒前
shishi发布了新的文献求助10
50秒前
隐形的小刺猬完成签到 ,获得积分10
55秒前
李绍进发布了新的文献求助10
55秒前
鱼鱼完成签到 ,获得积分10
1分钟前
JamesPei应助wz采纳,获得10
1分钟前
隐形曼青应助shishi采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
corleeang完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
安静的棉花糖完成签到 ,获得积分10
1分钟前
时空星客发布了新的文献求助10
1分钟前
ssddqsj发布了新的文献求助10
1分钟前
李绍进完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870674
求助须知:如何正确求助?哪些是违规求助? 6464957
关于积分的说明 15664727
捐赠科研通 4986844
什么是DOI,文献DOI怎么找? 2688978
邀请新用户注册赠送积分活动 1631361
关于科研通互助平台的介绍 1589423