间质细胞
转染
干细胞
间充质干细胞
细胞生物学
脂肪组织
基因敲除
化学
生物
癌症研究
基因
生物化学
作者
Eugene Lee,Jae-Yeon Moon,Ji‐Yun Ko,Seo‐Young Park,Gun‐Il Im
摘要
Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine for bone because of their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. On the other hand, the differentiation potential of ASCs is generally lower than that of bone marrow-derived stromal/stem cells and varies greatly depending on donors. In this study, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 (Glutathione S-transferase theta-1) was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation. On the other hand, GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species, and increased GSH/GSSG ratios were also detected in GSTT1-transfected ASCs. When the in vivo effect of GSTT1-transfected ASCs on bone regeneration was investigated with segmental long-bone defect model in rats, bone regeneration was significantly better after implantation of GSTT1-transfected ASCs compared with that of control vector-transfected ASCs. In conclusion, GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones. © 2023 American Society for Bone and Mineral Research (ASBMR).
科研通智能强力驱动
Strongly Powered by AbleSci AI