A deep learning-based electrocardiogram risk score for long term cardiovascular death and disease

医学 队列 内科学 心脏病学 疾病 心房颤动 弗雷明翰风险评分 接收机工作特性
作者
J. Weston Hughes,James Tooley,Jessica Torres Soto,Anna Ostropolets,Tim Poterucha,Matthew Kai Christensen,Neal Yuan,Ben Ehlert,Dhamanpreet Kaur,Guson Kang,Albert J. Rogers,Sanjiv M. Narayan,Pierre Elias,David Ouyang,Euan A. Ashley,James Zou,Marco Pérez
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:6 (1) 被引量:27
标识
DOI:10.1038/s41746-023-00916-6
摘要

Abstract The electrocardiogram (ECG) is the most frequently performed cardiovascular diagnostic test, but it is unclear how much information resting ECGs contain about long term cardiovascular risk. Here we report that a deep convolutional neural network can accurately predict the long-term risk of cardiovascular mortality and disease based on a resting ECG alone. Using a large dataset of resting 12-lead ECGs collected at Stanford University Medical Center, we developed SEER, the Stanford Estimator of Electrocardiogram Risk. SEER predicts 5-year cardiovascular mortality with an area under the receiver operator characteristic curve (AUC) of 0.83 in a held-out test set at Stanford, and with AUCs of 0.78 and 0.83 respectively when independently evaluated at Cedars-Sinai Medical Center and Columbia University Irving Medical Center. SEER predicts 5-year atherosclerotic disease (ASCVD) with an AUC of 0.67, similar to the Pooled Cohort Equations for ASCVD Risk, while being only modestly correlated. When used in conjunction with the Pooled Cohort Equations, SEER accurately reclassified 16% of patients from low to moderate risk, uncovering a group with an actual average 9.9% 10-year ASCVD risk who would not have otherwise been indicated for statin therapy. SEER can also predict several other cardiovascular conditions such as heart failure and atrial fibrillation. Using only lead I of the ECG it predicts 5-year cardiovascular mortality with an AUC of 0.80. SEER, used alongside the Pooled Cohort Equations and other risk tools, can substantially improve cardiovascular risk stratification and aid in medical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
peijiang发布了新的文献求助10
3秒前
3秒前
大模型应助HM采纳,获得10
5秒前
闫译文应助15采纳,获得10
5秒前
6秒前
刘子轩发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
exersong完成签到 ,获得积分10
9秒前
12秒前
歪歪打豆豆完成签到,获得积分10
12秒前
可乐发布了新的文献求助10
12秒前
学无止境发布了新的文献求助10
12秒前
13秒前
13秒前
16秒前
tdtk发布了新的文献求助10
16秒前
艾坤铠甲发布了新的文献求助10
16秒前
何应春发布了新的文献求助10
17秒前
张强发布了新的文献求助10
17秒前
17秒前
嘟嘟发布了新的文献求助10
18秒前
18秒前
SJD完成签到,获得积分0
19秒前
CodeCraft应助尼可深蓝采纳,获得10
20秒前
21秒前
21秒前
ZhangDaying完成签到 ,获得积分10
21秒前
小二郎应助will采纳,获得50
22秒前
英姑应助大成子采纳,获得10
23秒前
dd发布了新的文献求助10
23秒前
23秒前
manzte发布了新的文献求助10
24秒前
干净的紫夏完成签到,获得积分10
25秒前
VDC发布了新的文献求助10
25秒前
嘟嘟完成签到,获得积分10
25秒前
小猫卡车完成签到,获得积分10
26秒前
似我发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762150
求助须知:如何正确求助?哪些是违规求助? 3305970
关于积分的说明 10136295
捐赠科研通 3020128
什么是DOI,文献DOI怎么找? 1658731
邀请新用户注册赠送积分活动 792088
科研通“疑难数据库(出版商)”最低求助积分说明 754840