Syntax-enhanced aspect-based sentiment analysis with multi-layer attention

计算机科学 情绪分析 依赖关系(UML) 语法 自然语言处理 人工智能 杠杆(统计) 任务(项目管理) 依赖关系图 图形 关系(数据库) 光学(聚焦) 数据挖掘 理论计算机科学 物理 光学 经济 管理
作者
Jingli Shi,Weihua Li,Quan Bai,Yi Yang,Jianhua Jiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126730-126730 被引量:1
标识
DOI:10.1016/j.neucom.2023.126730
摘要

As a key task of fine-grained sentiment analysis, aspect-based sentiment analysis aims to analyse people’s opinions at the aspect level from user-generated texts. Various sub-tasks have been defined according to different scenarios, extracting aspect terms, opinion terms, and the corresponding sentiment. However, most existing studies merely focus on a specific sub-task or a subset of sub-tasks, having many complicated models designed and developed. This hinders the practical applications of aspect-based sentiment analysis. Therefore, some unified frameworks are proposed to handle all the subtasks, but most of them suffer from two limitations. First, the syntactic features are neglected, but such features have been proven effective for aspect-based sentiment analysis. Second, very few efficient mechanisms are developed to leverage important syntactic features, e.g., dependency relations, dependency relation types, and part-of-speech tags. To address these challenges, in this paper, we propose a novel unified framework to handle all defined sub-tasks for aspect-based sentiment analysis. Specifically, based on the graph convolutional network, a multi-layer semantic model is designed to capture the semantic relations between aspect and opinion terms. Moreover, a multi-layer syntax model is proposed to learn explicit dependency relations from different layers. To facilitate the sub-tasks, the learned semantic features are propagated to the syntax model with better semantic guidance to learn the syntactic representations comprehensively. Different from the conventional syntactic model, the proposed framework introduces two attention mechanisms. One is to model dependency relation and type, and the other is to encode part-of-speech tags for detecting aspect and opinion term boundaries. Extensive experiments are conducted to evaluate the proposed novel unified framework, and the experimental results on four groups of real-world datasets explicitly demonstrate the superiority of the proposed framework over a range of baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪飞机发布了新的文献求助10
1秒前
打打应助蔡蔡不菜菜采纳,获得10
1秒前
艺玲发布了新的文献求助10
1秒前
2秒前
坚果发布了新的文献求助10
2秒前
宋嬴一发布了新的文献求助10
2秒前
sweetbearm应助丞诺采纳,获得10
2秒前
2秒前
情怀应助缥缈的碧萱采纳,获得10
2秒前
一株多肉完成签到,获得积分10
3秒前
柯柯完成签到,获得积分10
3秒前
是赤赤呀完成签到,获得积分10
3秒前
阮人雄完成签到,获得积分10
3秒前
王饱饱完成签到 ,获得积分10
3秒前
Mr_Hao完成签到,获得积分10
4秒前
Keira_Chang完成签到,获得积分10
4秒前
起承转合完成签到 ,获得积分10
4秒前
风姿物语完成签到,获得积分10
5秒前
xiaopeng完成签到,获得积分10
5秒前
Jenny应助艺玲采纳,获得10
6秒前
一平发布了新的文献求助80
6秒前
樱桃味的火苗完成签到,获得积分10
6秒前
6秒前
波波完成签到,获得积分10
7秒前
322628完成签到,获得积分10
7秒前
领导范儿应助silong采纳,获得10
7秒前
身为风帆发布了新的文献求助10
7秒前
applepie完成签到,获得积分10
7秒前
顾己完成签到,获得积分10
7秒前
宋嬴一完成签到,获得积分10
7秒前
7秒前
我超爱cs完成签到,获得积分10
8秒前
沉静哲瀚完成签到,获得积分10
8秒前
MADKAI发布了新的文献求助10
9秒前
喝汤一样完成签到,获得积分10
9秒前
9秒前
9秒前
wormzjl发布了新的文献求助10
9秒前
虚拟的眼神完成签到,获得积分10
11秒前
陈_Ccc完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672