Syntax-enhanced aspect-based sentiment analysis with multi-layer attention

计算机科学 情绪分析 依赖关系(UML) 语法 自然语言处理 人工智能 杠杆(统计) 任务(项目管理) 依赖关系图 图形 关系(数据库) 光学(聚焦) 数据挖掘 理论计算机科学 物理 光学 经济 管理
作者
Jingli Shi,Weihua Li,Quan Bai,Yi Yang,Jianhua Jiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126730-126730 被引量:1
标识
DOI:10.1016/j.neucom.2023.126730
摘要

As a key task of fine-grained sentiment analysis, aspect-based sentiment analysis aims to analyse people’s opinions at the aspect level from user-generated texts. Various sub-tasks have been defined according to different scenarios, extracting aspect terms, opinion terms, and the corresponding sentiment. However, most existing studies merely focus on a specific sub-task or a subset of sub-tasks, having many complicated models designed and developed. This hinders the practical applications of aspect-based sentiment analysis. Therefore, some unified frameworks are proposed to handle all the subtasks, but most of them suffer from two limitations. First, the syntactic features are neglected, but such features have been proven effective for aspect-based sentiment analysis. Second, very few efficient mechanisms are developed to leverage important syntactic features, e.g., dependency relations, dependency relation types, and part-of-speech tags. To address these challenges, in this paper, we propose a novel unified framework to handle all defined sub-tasks for aspect-based sentiment analysis. Specifically, based on the graph convolutional network, a multi-layer semantic model is designed to capture the semantic relations between aspect and opinion terms. Moreover, a multi-layer syntax model is proposed to learn explicit dependency relations from different layers. To facilitate the sub-tasks, the learned semantic features are propagated to the syntax model with better semantic guidance to learn the syntactic representations comprehensively. Different from the conventional syntactic model, the proposed framework introduces two attention mechanisms. One is to model dependency relation and type, and the other is to encode part-of-speech tags for detecting aspect and opinion term boundaries. Extensive experiments are conducted to evaluate the proposed novel unified framework, and the experimental results on four groups of real-world datasets explicitly demonstrate the superiority of the proposed framework over a range of baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清话鹿酒完成签到,获得积分10
2秒前
5秒前
zoujianqiao完成签到 ,获得积分10
5秒前
6秒前
张伟完成签到 ,获得积分10
7秒前
蘇q发布了新的文献求助10
9秒前
12秒前
13秒前
田様应助大火炉采纳,获得10
14秒前
啦啦啦完成签到,获得积分10
16秒前
科研小哥完成签到,获得积分10
17秒前
幽默语兰完成签到,获得积分20
17秒前
20秒前
25秒前
26秒前
27秒前
27秒前
李健应助来轩采纳,获得10
28秒前
充电宝应助温婉的幻梦采纳,获得10
28秒前
Owen应助Crrr采纳,获得10
29秒前
29秒前
科研通AI2S应助靖柔采纳,获得10
30秒前
王治豪发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
31秒前
庸俗完成签到,获得积分10
31秒前
giao发布了新的文献求助10
33秒前
大个应助立军采纳,获得10
33秒前
Spirit发布了新的文献求助10
33秒前
清秀的月亮完成签到,获得积分10
35秒前
chum555发布了新的文献求助10
35秒前
zz完成签到,获得积分10
36秒前
烟花应助star采纳,获得30
37秒前
派大星完成签到,获得积分10
40秒前
ygr完成签到,获得积分0
41秒前
42秒前
luluki完成签到 ,获得积分10
42秒前
CodeCraft应助Fickle采纳,获得30
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112