Syntax-enhanced aspect-based sentiment analysis with multi-layer attention

计算机科学 情绪分析 依赖关系(UML) 语法 自然语言处理 人工智能 杠杆(统计) 任务(项目管理) 依赖关系图 图形 关系(数据库) 光学(聚焦) 数据挖掘 理论计算机科学 管理 经济 物理 光学
作者
Jingli Shi,Weihua Li,Quan Bai,Yi Yang,Jianhua Jiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126730-126730 被引量:1
标识
DOI:10.1016/j.neucom.2023.126730
摘要

As a key task of fine-grained sentiment analysis, aspect-based sentiment analysis aims to analyse people’s opinions at the aspect level from user-generated texts. Various sub-tasks have been defined according to different scenarios, extracting aspect terms, opinion terms, and the corresponding sentiment. However, most existing studies merely focus on a specific sub-task or a subset of sub-tasks, having many complicated models designed and developed. This hinders the practical applications of aspect-based sentiment analysis. Therefore, some unified frameworks are proposed to handle all the subtasks, but most of them suffer from two limitations. First, the syntactic features are neglected, but such features have been proven effective for aspect-based sentiment analysis. Second, very few efficient mechanisms are developed to leverage important syntactic features, e.g., dependency relations, dependency relation types, and part-of-speech tags. To address these challenges, in this paper, we propose a novel unified framework to handle all defined sub-tasks for aspect-based sentiment analysis. Specifically, based on the graph convolutional network, a multi-layer semantic model is designed to capture the semantic relations between aspect and opinion terms. Moreover, a multi-layer syntax model is proposed to learn explicit dependency relations from different layers. To facilitate the sub-tasks, the learned semantic features are propagated to the syntax model with better semantic guidance to learn the syntactic representations comprehensively. Different from the conventional syntactic model, the proposed framework introduces two attention mechanisms. One is to model dependency relation and type, and the other is to encode part-of-speech tags for detecting aspect and opinion term boundaries. Extensive experiments are conducted to evaluate the proposed novel unified framework, and the experimental results on four groups of real-world datasets explicitly demonstrate the superiority of the proposed framework over a range of baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助Rottyyii采纳,获得10
1秒前
姜夔发布了新的文献求助10
2秒前
三方完成签到,获得积分10
2秒前
wanci应助freesialll采纳,获得10
3秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Akim应助7890733采纳,获得10
6秒前
7秒前
Jasper应助付ffgseg采纳,获得10
7秒前
黎先生完成签到,获得积分10
7秒前
陈陈陈完成签到 ,获得积分10
8秒前
9秒前
暮色晚钟完成签到,获得积分10
9秒前
9秒前
小乔应助qdong采纳,获得10
11秒前
gkq完成签到,获得积分10
11秒前
王柯予完成签到,获得积分10
11秒前
autumn完成签到,获得积分10
11秒前
郑恒松发布了新的文献求助10
12秒前
一二完成签到,获得积分10
12秒前
刘步遥完成签到 ,获得积分10
12秒前
Jervis完成签到 ,获得积分10
12秒前
12秒前
13秒前
脑洞疼应助bio-tang采纳,获得10
14秒前
15秒前
小兔叽完成签到,获得积分10
15秒前
16秒前
蓝lan完成签到,获得积分20
17秒前
swimming完成签到 ,获得积分10
17秒前
18秒前
灵萱完成签到,获得积分20
19秒前
糟糕的乐驹完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
Buster发布了新的文献求助10
19秒前
freesialll发布了新的文献求助10
19秒前
20秒前
suna完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858