Syntax-enhanced aspect-based sentiment analysis with multi-layer attention

计算机科学 情绪分析 依赖关系(UML) 语法 自然语言处理 人工智能 杠杆(统计) 任务(项目管理) 依赖关系图 图形 关系(数据库) 光学(聚焦) 数据挖掘 理论计算机科学 管理 经济 物理 光学
作者
Jingli Shi,Weihua Li,Quan Bai,Yi Yang,Jianhua Jiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:557: 126730-126730 被引量:1
标识
DOI:10.1016/j.neucom.2023.126730
摘要

As a key task of fine-grained sentiment analysis, aspect-based sentiment analysis aims to analyse people’s opinions at the aspect level from user-generated texts. Various sub-tasks have been defined according to different scenarios, extracting aspect terms, opinion terms, and the corresponding sentiment. However, most existing studies merely focus on a specific sub-task or a subset of sub-tasks, having many complicated models designed and developed. This hinders the practical applications of aspect-based sentiment analysis. Therefore, some unified frameworks are proposed to handle all the subtasks, but most of them suffer from two limitations. First, the syntactic features are neglected, but such features have been proven effective for aspect-based sentiment analysis. Second, very few efficient mechanisms are developed to leverage important syntactic features, e.g., dependency relations, dependency relation types, and part-of-speech tags. To address these challenges, in this paper, we propose a novel unified framework to handle all defined sub-tasks for aspect-based sentiment analysis. Specifically, based on the graph convolutional network, a multi-layer semantic model is designed to capture the semantic relations between aspect and opinion terms. Moreover, a multi-layer syntax model is proposed to learn explicit dependency relations from different layers. To facilitate the sub-tasks, the learned semantic features are propagated to the syntax model with better semantic guidance to learn the syntactic representations comprehensively. Different from the conventional syntactic model, the proposed framework introduces two attention mechanisms. One is to model dependency relation and type, and the other is to encode part-of-speech tags for detecting aspect and opinion term boundaries. Extensive experiments are conducted to evaluate the proposed novel unified framework, and the experimental results on four groups of real-world datasets explicitly demonstrate the superiority of the proposed framework over a range of baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大模型应助June采纳,获得10
1秒前
文静的芮完成签到,获得积分10
1秒前
1秒前
2秒前
细腻海蓝发布了新的文献求助10
2秒前
sam0522完成签到,获得积分10
2秒前
2秒前
铁妞妞是土猫完成签到,获得积分20
2秒前
3秒前
SciGPT应助LI采纳,获得10
3秒前
ZAY发布了新的文献求助10
3秒前
Cola完成签到,获得积分0
4秒前
LLLucen完成签到 ,获得积分10
4秒前
英吉利25发布了新的文献求助10
5秒前
5秒前
5秒前
张张张发布了新的文献求助10
6秒前
刘富贵完成签到,获得积分10
6秒前
李乐一发布了新的文献求助10
7秒前
南湖完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助30
8秒前
ECHOHJR完成签到,获得积分10
9秒前
叶子发布了新的文献求助10
10秒前
11秒前
九星完成签到 ,获得积分10
11秒前
12秒前
苗条雅彤完成签到,获得积分10
12秒前
子桑发布了新的文献求助10
12秒前
小元完成签到,获得积分10
13秒前
周夭完成签到,获得积分20
13秒前
慕豁发布了新的文献求助10
13秒前
14秒前
14秒前
虚幻谷波完成签到,获得积分10
14秒前
bless完成签到,获得积分10
14秒前
14秒前
福旺云吞发布了新的文献求助10
14秒前
李爱国应助小郭小郭采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750756
求助须知:如何正确求助?哪些是违规求助? 5465712
关于积分的说明 15367939
捐赠科研通 4889850
什么是DOI,文献DOI怎么找? 2629420
邀请新用户注册赠送积分活动 1577683
关于科研通互助平台的介绍 1534066