亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Syntax-enhanced aspect-based sentiment analysis with multi-layer attention

计算机科学 情绪分析 依赖关系(UML) 语法 自然语言处理 人工智能 杠杆(统计) 任务(项目管理) 依赖关系图 图形 关系(数据库) 光学(聚焦) 数据挖掘 理论计算机科学 管理 经济 物理 光学
作者
Jingli Shi,Weihua Li,Quan Bai,Yi Yang,Jianhua Jiang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:557: 126730-126730 被引量:1
标识
DOI:10.1016/j.neucom.2023.126730
摘要

As a key task of fine-grained sentiment analysis, aspect-based sentiment analysis aims to analyse people’s opinions at the aspect level from user-generated texts. Various sub-tasks have been defined according to different scenarios, extracting aspect terms, opinion terms, and the corresponding sentiment. However, most existing studies merely focus on a specific sub-task or a subset of sub-tasks, having many complicated models designed and developed. This hinders the practical applications of aspect-based sentiment analysis. Therefore, some unified frameworks are proposed to handle all the subtasks, but most of them suffer from two limitations. First, the syntactic features are neglected, but such features have been proven effective for aspect-based sentiment analysis. Second, very few efficient mechanisms are developed to leverage important syntactic features, e.g., dependency relations, dependency relation types, and part-of-speech tags. To address these challenges, in this paper, we propose a novel unified framework to handle all defined sub-tasks for aspect-based sentiment analysis. Specifically, based on the graph convolutional network, a multi-layer semantic model is designed to capture the semantic relations between aspect and opinion terms. Moreover, a multi-layer syntax model is proposed to learn explicit dependency relations from different layers. To facilitate the sub-tasks, the learned semantic features are propagated to the syntax model with better semantic guidance to learn the syntactic representations comprehensively. Different from the conventional syntactic model, the proposed framework introduces two attention mechanisms. One is to model dependency relation and type, and the other is to encode part-of-speech tags for detecting aspect and opinion term boundaries. Extensive experiments are conducted to evaluate the proposed novel unified framework, and the experimental results on four groups of real-world datasets explicitly demonstrate the superiority of the proposed framework over a range of baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳代云发布了新的文献求助10
9秒前
sjj完成签到,获得积分10
20秒前
33秒前
Criminology34应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
40秒前
bkagyin应助lezbj99采纳,获得10
44秒前
紧张的以山完成签到,获得积分10
44秒前
Akim应助lezbj99采纳,获得10
1分钟前
anqi6688完成签到,获得积分10
1分钟前
HUSH完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助anqi6688采纳,获得10
1分钟前
111完成签到 ,获得积分10
2分钟前
科目三应助GPTea采纳,获得10
2分钟前
Augustines完成签到,获得积分10
2分钟前
冷静新烟完成签到,获得积分20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Magali应助科研通管家采纳,获得30
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
清脆的飞丹完成签到,获得积分10
2分钟前
冷静新烟发布了新的文献求助10
3分钟前
Krsky完成签到,获得积分10
3分钟前
浮游应助GPTea采纳,获得10
3分钟前
HUSH发布了新的文献求助20
3分钟前
Hugrainbow完成签到,获得积分10
3分钟前
maher完成签到 ,获得积分10
3分钟前
酷波er应助GPTea采纳,获得10
3分钟前
五四三二一完成签到 ,获得积分10
3分钟前
3分钟前
DPH完成签到 ,获得积分10
4分钟前
冷静新烟发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
曾经沛白完成签到 ,获得积分10
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116357
求助须知:如何正确求助?哪些是违规求助? 4323015
关于积分的说明 13469810
捐赠科研通 4155310
什么是DOI,文献DOI怎么找? 2277113
邀请新用户注册赠送积分活动 1278970
关于科研通互助平台的介绍 1217011