Syntax-enhanced aspect-based sentiment analysis with multi-layer attention

计算机科学 情绪分析 依赖关系(UML) 语法 自然语言处理 人工智能 杠杆(统计) 任务(项目管理) 依赖关系图 图形 关系(数据库) 光学(聚焦) 数据挖掘 理论计算机科学 物理 光学 经济 管理
作者
Jingli Shi,Weihua Li,Quan Bai,Yi Yang,Jianhua Jiang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:557: 126730-126730 被引量:1
标识
DOI:10.1016/j.neucom.2023.126730
摘要

As a key task of fine-grained sentiment analysis, aspect-based sentiment analysis aims to analyse people’s opinions at the aspect level from user-generated texts. Various sub-tasks have been defined according to different scenarios, extracting aspect terms, opinion terms, and the corresponding sentiment. However, most existing studies merely focus on a specific sub-task or a subset of sub-tasks, having many complicated models designed and developed. This hinders the practical applications of aspect-based sentiment analysis. Therefore, some unified frameworks are proposed to handle all the subtasks, but most of them suffer from two limitations. First, the syntactic features are neglected, but such features have been proven effective for aspect-based sentiment analysis. Second, very few efficient mechanisms are developed to leverage important syntactic features, e.g., dependency relations, dependency relation types, and part-of-speech tags. To address these challenges, in this paper, we propose a novel unified framework to handle all defined sub-tasks for aspect-based sentiment analysis. Specifically, based on the graph convolutional network, a multi-layer semantic model is designed to capture the semantic relations between aspect and opinion terms. Moreover, a multi-layer syntax model is proposed to learn explicit dependency relations from different layers. To facilitate the sub-tasks, the learned semantic features are propagated to the syntax model with better semantic guidance to learn the syntactic representations comprehensively. Different from the conventional syntactic model, the proposed framework introduces two attention mechanisms. One is to model dependency relation and type, and the other is to encode part-of-speech tags for detecting aspect and opinion term boundaries. Extensive experiments are conducted to evaluate the proposed novel unified framework, and the experimental results on four groups of real-world datasets explicitly demonstrate the superiority of the proposed framework over a range of baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兴奋电脑完成签到,获得积分10
1秒前
Kira发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
大方的访波完成签到 ,获得积分10
4秒前
4秒前
友好的白柏完成签到 ,获得积分10
4秒前
在水一方应助浔xxx采纳,获得10
5秒前
qin希望应助花生采纳,获得10
5秒前
123123完成签到,获得积分10
6秒前
6秒前
orixero应助潇洒的问夏采纳,获得10
6秒前
lenon发布了新的文献求助10
6秒前
ycg完成签到,获得积分10
7秒前
gz发布了新的文献求助10
7秒前
丘小易发布了新的文献求助10
7秒前
7秒前
stcer完成签到,获得积分10
7秒前
wu驳回了打打应助
7秒前
Adrenaline完成签到,获得积分10
8秒前
大橘完成签到 ,获得积分10
8秒前
和谐迎夏完成签到,获得积分10
8秒前
8秒前
nadeem发布了新的文献求助10
9秒前
BP发布了新的文献求助10
9秒前
9秒前
萤火虫发布了新的文献求助10
9秒前
9秒前
风雨中奔跑的兔子完成签到,获得积分10
10秒前
Hmc完成签到 ,获得积分10
10秒前
Kira完成签到,获得积分10
10秒前
四月完成签到 ,获得积分10
11秒前
孙先生YY发布了新的文献求助10
11秒前
犹豫信封发布了新的文献求助10
12秒前
张亚朋完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650