已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Practical whole-body elasto-geometric calibration of a humanoid robot: Application to the TALOS robot

仿人机器人 计算机科学 机器人 校准 机器人校准 可观测性 集合(抽象数据类型) 刚体 人工智能 模拟 算法 控制理论(社会学) 机器人运动学 移动机器人 数学 控制(管理) 统计 物理 经典力学 应用数学 程序设计语言
作者
Vincent Bonnet,Joseph Mirabel,David Daney,Florent Lamiraux,Maxime Gautier,Olivier Stasse
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:164: 104365-104365 被引量:2
标识
DOI:10.1016/j.robot.2023.104365
摘要

The whole-body elasto-geometrical calibration of humanoid robots is critical particularly for their control and accurate simulation. However, it is often not considered probably since it is a nontrivial task due to the mechanical complexity and inherent constraints of anthropomorphic structures. Also, humanoid robots have to sustain great efforts on their support legs, leading to link and joint being deformed, and are prone to auto-collision. Thus, elastic parameters have to be factored in addition to the geometric ones and to improve the precision of the pose of all robot segments. This is much more cumbersome and time consuming than the classical calibration of serial manipulators that deals solely with the estimation of the pose of the end-effector. Finally, due to the complexity of the task, a manual intervention in several steps of the calibration is no longer possible and a thorough automation of the approach is needed. Therefore, we propose to use a stereophotogrammetric system along with embedded joint torque sensors to calibrate the pose of all robot links with a fully automatic procedure. The generation of the minimal set of optimal calibration postures is based on a new iterative optimization process that leads to a stable maximum of an observability index. Then full set of geometrical parameters but also joint and base elastic parameters were calibrated using a single least-square optimization program. The proposed method was validated on a TALOS humanoid robot allowing to obtain an accurate whole-body calibration in less than 10 min. The proposed approach was cross-validated experimentally and showed an average RMS error of the tracked markers of 2.2 mm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心凌柏发布了新的文献求助10
2秒前
顾矜应助wuqs采纳,获得10
3秒前
aspiling发布了新的文献求助80
3秒前
隐形曼青应助ZhuJing采纳,获得10
4秒前
7秒前
aspiling完成签到,获得积分10
9秒前
10秒前
10秒前
欢呼乘风应助南川石采纳,获得50
12秒前
丘比特应助Villanellel采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
AN应助科研通管家采纳,获得100
13秒前
leemonster发布了新的文献求助10
13秒前
13秒前
科研通AI6应助桀桀桀采纳,获得10
14秒前
巨型肥猫完成签到 ,获得积分10
15秒前
开心凌柏发布了新的文献求助10
20秒前
srics完成签到,获得积分10
21秒前
23秒前
QingCress77完成签到,获得积分10
23秒前
23秒前
28秒前
28秒前
科研通AI6应助留胡子的邑采纳,获得10
28秒前
28秒前
Bloomy发布了新的文献求助10
29秒前
anan完成签到,获得积分10
30秒前
30秒前
ht发布了新的文献求助10
32秒前
32秒前
ZhuJing发布了新的文献求助10
32秒前
Hello应助YYYhl采纳,获得10
32秒前
syyw2021发布了新的文献求助10
33秒前
晓晓鹤发布了新的文献求助30
35秒前
Greyson发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693