已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiview Spatial–Spectral Two-Stream Network for Hyperspectral Image Unmixing

高光谱成像 像素 遥感 自编码 空间分析 模式识别(心理学) 计算机科学 光谱带 全光谱成像 编码器 判别式 人工智能 人工神经网络 计算机视觉 地质学 操作系统
作者
Lin Qi,Zhenwei Chen,Feng Gao,Junyu Dong,Xinbo Gao,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:12
标识
DOI:10.1109/tgrs.2023.3237556
摘要

Linear spectral unmixing is an important technique in the analysis of mixed pixels in hyperspectral images. In recent years, deep learning-based methods have been garnering increasing attention in hyperspectral unmixing; especially, unsupervised autoencoder (AE) networks that have achieved excellent unmixing performance are a recent trend. While most approaches use spatial information, it is well known that hyperspectral data are characterized by a large number of narrow spectral bands. In order to take full advantage of the hyperspectral bands in unmixing and the spatial information, in this article, we explore multiview spectral and spatial information in an AE-based unmixing framework. We introduce multiview spectral information through spectral partitioning and propose a multiview spatial–spectral two-stream network, called MSSS-Net, which simultaneously learns a spatial stream network and a multiview spectral stream network in an end-to-end fashion for more efficient unmixing. The MSSS-Net is a two-stream deep unmixing network sharing a decoder, where its two AE networks employ recurrent neural networks (RNNs) to collaboratively utilize multiview spectral and spatial information. The spatial stream network branch extracts the spatial features of pixels and its neighbors, while the multiview spectral stream network branch exploits the multiview spectral bands of a pixel. Meanwhile, we design a cascaded bidirectional and unidirectional RNNs' encoder structure for multiview spatial–spectral information to learn more discriminative deep patch-pixel features. Extensive ablation studies and experiments on both synthetic and real datasets demonstrate the superiority of the MSSS-Net over state-of-the-art unmixing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
萧水白应助Patrick采纳,获得30
3秒前
小马甲应助毛毛采纳,获得10
5秒前
艾斯完成签到,获得积分10
5秒前
Orange应助太空工程师采纳,获得10
5秒前
8秒前
9秒前
酷波er应助ldj6670采纳,获得10
10秒前
10秒前
深情安青应助独特听芹采纳,获得10
10秒前
思源应助小秦采纳,获得10
11秒前
Murphy发布了新的文献求助10
11秒前
naru完成签到,获得积分10
11秒前
12秒前
搞怪薯片发布了新的文献求助30
15秒前
良药发布了新的文献求助10
15秒前
gebiheishuini完成签到,获得积分10
16秒前
19秒前
20秒前
22秒前
23秒前
希望天下0贩的0应助纯白采纳,获得10
23秒前
陈全刚完成签到,获得积分10
24秒前
活力妙彤发布了新的文献求助10
24秒前
25秒前
顺利翼发布了新的文献求助10
26秒前
G12345发布了新的文献求助10
27秒前
27秒前
27秒前
共享精神应助机智柚子采纳,获得10
28秒前
称心文博发布了新的文献求助10
28秒前
29秒前
woollen2022发布了新的文献求助10
31秒前
whiltey完成签到 ,获得积分10
31秒前
哈哈哈发布了新的文献求助10
31秒前
Terence发布了新的文献求助10
31秒前
归安发布了新的文献求助10
32秒前
36秒前
cocolu应助科研通管家采纳,获得10
38秒前
南风吹梦完成签到,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307115
求助须知:如何正确求助?哪些是违规求助? 2940891
关于积分的说明 8499299
捐赠科研通 2615068
什么是DOI,文献DOI怎么找? 1428618
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318