A one-stone-three-birds strategy to construct Mo-FeS2/Ni3S2@C electrocatalyst with strong interfacial coupling effect to achieve efficient oxygen evolution reaction

电催化剂 过电位 析氧 催化作用 电解 分解水 纳米线 煅烧 电解水 材料科学 化学 纳米技术 化学工程 电化学 冶金 电解质 电极 物理化学 工程类 光催化 生物化学
作者
Enhong Liu,Haoran Guo,Yanyan Li,Jiayang Zhao,Rui Song
出处
期刊:Applied Surface Science [Elsevier]
卷期号:678: 161147-161147 被引量:2
标识
DOI:10.1016/j.apsusc.2024.161147
摘要

The development of high-performance oxygen evolution reaction (OER) electrocatalysts is quite pivotal to facilitate hydrogen production. In this work, we integrate the synergistic effects of heterogeneous interface engineering, multiscale engineering and doping engineering to greatly improve the catalytic activity of the electrocatalyst. Specifically, with a Anderson-type polymetallic oxonate (NH4)3[NiMo6O24H6]·7H2O as a precursor, the Mo-FeS2/Ni3S2@C nanowire arrays that uniformly grown on nickel foam (NF) surfaces were prepared by a simple hydrothermal process followed by calcination. The as-prepared Mo-FeS2/Ni3S2@C exhibits excellent alkaline OER performance with a low overpotential of 196 mV to achieve a current density of 10 mA cm−2 and maintain high stability for over 100 h at 100 mA cm−2. Theoretical calculations and experimental results indicate that the high activity of Mo-FeS2/Ni3S2@C is mainly attributed to the charge interaction at the multiple interfaces of FeS2, Ni3S2 and porous carbon layers. The Mo facilitates inducing the formation of high-valent Ni, Fe, thus forming of the Ni(Fe)OOH phase that contributes to the intrinsic OER active site of the Mo-FeS2/Ni3S2@C electrode. In addition, the surface of Mo-FeS2/Ni3S2@C nanowire is composed of ordered nanosheets, exhibiting a unique hierarchical multi-scale structure, which is conducive to exposing more active sites. This hierarchical structure gives it superhydrophilic and superoxyphobic properties, ensuring the stability during continuous electrolysis. This study showcases the importance of multi-engineering synergies and foresees the avenue of designing novel OER electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的雪完成签到,获得积分10
1秒前
1秒前
1秒前
zgrmws应助外向小猫咪采纳,获得10
1秒前
1秒前
2秒前
xubobo完成签到,获得积分10
2秒前
华仔应助花开不败采纳,获得10
2秒前
mistletoe完成签到,获得积分10
2秒前
领导范儿应助路远采纳,获得10
2秒前
曲少完成签到,获得积分10
2秒前
爆米花应助普鲁卡因采纳,获得10
2秒前
3秒前
子车茗应助孤独如曼采纳,获得20
4秒前
Daisy发布了新的文献求助10
4秒前
4秒前
小离心机完成签到,获得积分10
4秒前
NexusExplorer应助zd采纳,获得10
5秒前
开朗紫完成签到,获得积分10
5秒前
5秒前
幽默身影发布了新的文献求助10
5秒前
天天快乐应助mhbknight采纳,获得10
5秒前
chun123完成签到,获得积分10
5秒前
5秒前
Judson发布了新的文献求助10
6秒前
在水一方应助於傲松采纳,获得10
6秒前
动听衬衫发布了新的文献求助10
6秒前
把拼好的饭给你完成签到,获得积分10
6秒前
psf01416完成签到,获得积分10
7秒前
斯利美尔完成签到,获得积分10
7秒前
唠叨的香芦完成签到,获得积分10
7秒前
小苏打完成签到,获得积分10
7秒前
顺心夜南应助Hh采纳,获得20
7秒前
汉堡包应助tingxiaomei采纳,获得10
8秒前
Ava应助邱卓采纳,获得10
8秒前
科研通AI2S应助凯凯采纳,获得10
8秒前
zhenxing完成签到,获得积分10
9秒前
流水完成签到,获得积分10
9秒前
yinhe028发布了新的文献求助10
9秒前
暮夕梧桐完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997