Physician Adoption of AI Assistant

透明度(行为) 医疗保健 人工智能 计算机科学 知识管理 计算机安全 经济 经济增长
作者
Ting Hou,Meng Li,Yinliang Tan,Huazhong Zhao
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (5): 1639-1655 被引量:2
标识
DOI:10.1287/msom.2023.0093
摘要

Problem definition: Artificial intelligence (AI) assistants—software agents that can perform tasks or services for individuals—are among the most promising AI applications. However, little is known about the adoption of AI assistants by service providers (i.e., physicians) in a real-world healthcare setting. In this paper, we investigate the impact of the AI smartness (i.e., whether the AI assistant is powered by machine learning intelligence) and the impact of AI transparency (i.e., whether physicians are informed of the AI assistant). Methodology/results: We collaborate with a leading healthcare platform to run a field experiment in which we compare physicians’ adoption behavior, that is, adoption rate and adoption timing, of smart and automated AI assistants under transparent and non-transparent conditions. We find that the smartness can increase the adoption rate and shorten the adoption timing, whereas the transparency can only shorten the adoption timing. Moreover, the impact of AI transparency on the adoption rate is contingent on the smartness level of the AI assistant: the transparency increases the adoption rate only when the AI assistant is not equipped with smart algorithms and fails to do so when the AI assistant is smart. Managerial implications: Our study can guide platforms in designing their AI strategies. Platforms should improve the smartness of AI assistants. If such an improvement is too costly, the platform should transparentize the AI assistant, especially when it is not smart. Funding: This research was supported by a Behavioral Research Assistance Grant from the C. T. Bauer College of Business, University of Houston. H. Zhao acknowledges support from Hong Kong General Research Fund [9043593]. Y. (R.) Tan acknowledges generous support from CEIBS Research [Grant AG24QCS]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0093 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助义气觅双采纳,获得10
刚刚
岳岳欲试完成签到,获得积分10
1秒前
chen完成签到,获得积分10
2秒前
Jing完成签到,获得积分20
2秒前
7qi完成签到,获得积分10
3秒前
左丘冥完成签到,获得积分10
3秒前
望北楼主完成签到,获得积分10
5秒前
5秒前
5秒前
无奈擎苍完成签到 ,获得积分10
7秒前
7秒前
Ron完成签到,获得积分10
8秒前
宁山河完成签到,获得积分10
9秒前
大林发布了新的文献求助30
10秒前
tingfeng321发布了新的文献求助10
12秒前
vitamin发布了新的文献求助10
13秒前
14秒前
duo完成签到,获得积分10
15秒前
15秒前
烟花应助岳岳欲试采纳,获得10
17秒前
17秒前
17秒前
正直凛发布了新的文献求助10
19秒前
ny发布了新的文献求助10
21秒前
21秒前
Kkk发布了新的文献求助10
22秒前
yangyang发布了新的文献求助80
22秒前
Cy发布了新的文献求助10
22秒前
23秒前
无12完成签到,获得积分10
23秒前
无忧应助123采纳,获得10
24秒前
25秒前
SXM发布了新的文献求助10
26秒前
小二郎应助YWJ采纳,获得10
26秒前
Levi李完成签到,获得积分10
27秒前
隐形曼青应助敬老院N号采纳,获得10
29秒前
搜集达人应助敬老院N号采纳,获得10
29秒前
斯文败类应助敬老院N号采纳,获得10
29秒前
百里秋完成签到,获得积分10
29秒前
thirty发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 600
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3064589
求助须知:如何正确求助?哪些是违规求助? 2719285
关于积分的说明 7463273
捐赠科研通 2365693
什么是DOI,文献DOI怎么找? 1254139
科研通“疑难数据库(出版商)”最低求助积分说明 608796
版权声明 596684