Exploring the categorical nature of colour perception: Insights from artificial networks

范畴变量 人工智能 范畴知觉 感知 人工神经网络 计算机科学 模式识别(心理学) 机器学习 心理学 神经科学 言语感知
作者
Arash Akbarinia
出处
期刊:Neural Networks [Elsevier]
卷期号:181: 106758-106758
标识
DOI:10.1016/j.neunet.2024.106758
摘要

The electromagnetic spectrum of light from a rainbow is a continuous signal, yet we perceive it vividly in several distinct colour categories. The origins and underlying mechanisms of this phenomenon remain partly unexplained. We investigate categorical colour perception in artificial neural networks (ANNs) using the odd-one-out paradigm. In the first experiment, we compared unimodal vision networks (e.g., ImageNet object recognition) to multimodal vision-language models (e.g., CLIP text-image matching). Our results show that vision networks predict a significant portion of human data (approximately 80%), while vision-language models account for the remaining unexplained data, even in non-linguistic experiments. These findings suggest that categorical colour perception is a language-independent representation, though it is partly shaped by linguistic colour terms during its development. In the second experiment, we explored how the visual task influences the colour categories of an ANN by examining twenty-four Taskonomy networks. Our results indicate that human-like colour categories are task-dependent, predominantly emerging in semantic and 3D tasks, with a notable absence in low-level tasks. To explain this difference, we analysed kernel responses before the winner-takes-all stage, observing that networks with mismatching colour categories may still align in underlying continuous representations. Our findings quantify the dual influence of visual signals and linguistic factors in categorical colour perception and demonstrate the task-dependent nature of this phenomenon, suggesting that categorical colour perception emerges to facilitate certain visual tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大意的凝芙完成签到,获得积分10
1秒前
2秒前
2秒前
Akim应助予秋采纳,获得10
2秒前
4秒前
丹青发布了新的文献求助30
5秒前
wangayting发布了新的文献求助30
5秒前
个性竺完成签到,获得积分10
5秒前
wlei发布了新的文献求助10
6秒前
6秒前
6秒前
科研通AI2S应助如意的白云采纳,获得10
7秒前
7秒前
7秒前
chen发布了新的文献求助10
8秒前
9秒前
9秒前
Willow发布了新的文献求助10
11秒前
11秒前
予秋发布了新的文献求助10
12秒前
无妨发布了新的文献求助10
14秒前
求助大佬们完成签到,获得积分10
14秒前
16秒前
Singularity应助需不需曜采纳,获得10
16秒前
Aurora完成签到,获得积分10
17秒前
23完成签到,获得积分10
17秒前
金灶沐发布了新的文献求助10
18秒前
丘比特应助猛犸象冲冲冲采纳,获得10
18秒前
JamesPei应助无妨采纳,获得10
20秒前
123发布了新的文献求助10
21秒前
22秒前
fml完成签到,获得积分10
22秒前
含蓄洋葱发布了新的文献求助30
22秒前
23秒前
社恐科研狗完成签到,获得积分10
24秒前
乐乐应助能干的小海豚采纳,获得10
24秒前
27秒前
bkagyin应助KK采纳,获得10
27秒前
李健应助噗噗采纳,获得30
27秒前
lyrelias发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136456
求助须知:如何正确求助?哪些是违规求助? 2787471
关于积分的说明 7781435
捐赠科研通 2443406
什么是DOI,文献DOI怎么找? 1299154
科研通“疑难数据库(出版商)”最低求助积分说明 625359
版权声明 600939