Refined lithium-ion battery state of health estimation with charging segment adjustment

健康状况 电池(电) 电压 残余物 均方误差 荷电状态 计算机科学 工程类 电气工程 数学 物理 统计 算法 功率(物理) 量子力学
作者
Kun Zheng,Jinhao Meng,Zhipeng Yang,Feifan Zhou,Kun Yang,Zhengxiang Song
出处
期刊:Applied Energy [Elsevier]
卷期号:375: 124077-124077 被引量:11
标识
DOI:10.1016/j.apenergy.2024.124077
摘要

Accurately monitoring the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for battery management systems (BMS), yet there lack of the possibility to fully use the random charging segments with any length. To this end, a residual convolution and transformer network (R-TNet) is proposed to enable an accurate LIB SOH estimation with the sparse dimension of feature in random segments, where the start and end voltage, the Ampere-hour (Ah) throughput, temperature, and current rate of a charging segment are required for the estimation task. Through the cross-attention mechanism of R-TNet, the operation condition and the position of the partial voltage can be integrated to enable the LIBs SOH estimation within a charging segment. To extend the flexibility with arbitrary charging behaviors, an ElasticNet-based feature transfer strategy is designed to use any charging length. 121 cells with different chemistries and cycling conditions are used to validate the performance of the proposed method. The results of the proposed method show that the root mean square error (RMSE) of SOH estimation can reach 1.6% even for a 50 mV voltage segment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助wst采纳,获得10
1秒前
MyAI应助LH采纳,获得10
1秒前
jihe发布了新的文献求助10
1秒前
新1发布了新的文献求助20
1秒前
高高烨磊完成签到,获得积分10
2秒前
天天快乐应助阔达乘云采纳,获得10
2秒前
2秒前
深情小丑鱼完成签到 ,获得积分10
4秒前
烨小冯完成签到,获得积分10
4秒前
5秒前
Akim应助酷酷采纳,获得10
5秒前
疆之北发布了新的文献求助10
5秒前
5秒前
waws完成签到,获得积分10
5秒前
852应助张建采纳,获得10
6秒前
bjjtdx1997发布了新的文献求助10
6秒前
玉玉鼠发布了新的文献求助10
6秒前
六六发布了新的文献求助10
6秒前
希望天下0贩的0应助fj采纳,获得10
6秒前
7秒前
xuchenglong发布了新的文献求助10
7秒前
Ansong完成签到,获得积分10
7秒前
长情小鸽子完成签到,获得积分10
7秒前
8秒前
敏感妙竹完成签到,获得积分10
10秒前
Hello应助儒雅沛蓝采纳,获得10
10秒前
科研通AI2S应助ardejiang采纳,获得10
10秒前
11秒前
11秒前
czz发布了新的文献求助10
12秒前
大聪明发布了新的文献求助10
12秒前
12秒前
13秒前
孙孙完成签到,获得积分10
13秒前
科目三应助兰兴采纳,获得10
13秒前
852应助小巧问芙采纳,获得10
13秒前
13秒前
风中冰香应助黑糖采纳,获得20
14秒前
跳跃毒娘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351917
求助须知:如何正确求助?哪些是违规求助? 4484853
关于积分的说明 13960712
捐赠科研通 4384534
什么是DOI,文献DOI怎么找? 2409028
邀请新用户注册赠送积分活动 1401521
关于科研通互助平台的介绍 1375057