Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion MR imaging in pediatric brain tumors: A systematic review and meta-analysis

医学 动脉自旋标记 灌注扫描 荟萃分析 灌注 对比度(视觉) 核医学 磁共振成像 放射科 病理 计算机科学 人工智能
作者
Stéphanie Vella,Josef Lauri,Reuben Grech
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
标识
DOI:10.3174/ajnr.a8442
摘要

ABSTRACT

BACKGROUND:

Brain tumors are a leading cause of mortality in children. Accurate tumor grading is essential to plan treatment and for prognostication. Perfusion imaging has been shown to correlate well with tumor grade in adults, however there are fewer studies in pediatric patients. Moreover, there is no consensus regarding which MR perfusion technique demonstrates the highest accuracy in the latter population.

PURPOSE:

To compare the diagnostic test accuracy of dynamic-susceptibility contrast and arterial spin-labelling, in their ability to differentiate between low-and high-grade pediatric brain tumors at first presentation.

DATA SOURCES:

Articles were retrieved from online electronic databases: MEDLINE (Ovid), Web of Science Core Collection and SCOPUS.

STUDY SELECTION:

Studies in pediatric patients with a treatment naïve diagnosed brain tumor and imaging including either ASL or DSC or both, together with a histological diagnosis were included. Studies involving adult patient or mixed age populations, studies with incomplete data and those which used dynamic contrast enhanced perfusion were excluded.

DATA ANALYSIS:

The sensitivities and specificities obtained from each study were used to calculate the true-positive, true-negative, false-positive, and false-negative count. A case was defined as a histologically proven high-grade tumor. The random-effect model was used to merge statistics. Significance level was set at p < 0.05.

DATA SYNTHESIS:

Forest plots showing pairs of sensitivity and specificity, with their 95% confidence intervals, were constructed for each study. The bivariate model was applied in order to account for between-study variability. The SROC plots were constructed from the obtained data-sets. The AUC for the SROC of all studies was estimated to determine the overall diagnostic test accuracy of perfusion MRI, followed by a separate comparison of the SROC of ASL versus DSC studies.

LIMITATIONS:

Small and heterogenous sample size.

CONCLUSIONS:

The diagnostic accuracy of ASL was found to be comparable and not inferior to DSC, thus its use in the diagnostic assessment of pediatric patients should continue to be supported. ABBREVIATIONS: ASL = arterial spin labelling, DSC = dynamic susceptibility contrast, DCE = dynamic contrast-enhanced, rCBF = relative cerebral blood flow, rCBV = relative cerebral blood volume, MTT = mean transfer time, TR = repetition time, TE = echo time, SROC = summary receiver operating characteristics, HG= high-grade, LG = low-grade, AUC = area under the curve, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
打打应助欣喜战斗机采纳,获得10
刚刚
刚刚
sola发布了新的文献求助10
刚刚
LZX发布了新的文献求助10
1秒前
无极微光应助Echen采纳,获得20
1秒前
李爱国应助养了个豆豆采纳,获得10
1秒前
Tina发布了新的文献求助30
3秒前
midus发布了新的文献求助10
3秒前
4秒前
wcy发布了新的文献求助10
4秒前
言欢完成签到,获得积分20
5秒前
无敌龙傲天完成签到,获得积分10
6秒前
6秒前
7秒前
asd应助daisy采纳,获得30
7秒前
7秒前
笨笨水儿完成签到 ,获得积分10
7秒前
9秒前
Otorhino完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
YingyingFan发布了新的文献求助10
11秒前
11秒前
Ccccsa发布了新的文献求助10
11秒前
背后的惜珊完成签到 ,获得积分10
12秒前
LZX完成签到,获得积分20
12秒前
123456发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
优雅酸奶发布了新的文献求助10
14秒前
14秒前
Feathamity发布了新的文献求助10
14秒前
温暖的子骞完成签到,获得积分10
16秒前
pancake应助ACE采纳,获得50
16秒前
18秒前
20秒前
木木发布了新的文献求助30
20秒前
木泽发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031