Intracranial meningioma: A review of recent and emerging data on the utility of preoperative imaging for management

医学 脑膜瘤 神经放射学家 磁共振成像 放射科 血管性 神经影像学 放射外科 医学物理学 放射治疗 精神科
作者
Bryce D. Beutler,Jonathan Lee,Sarah P. Edminster,Priya Rajagopalan,Thomas G. Clifford,Jonathan Maw,Gabriel Zada,Anna Mathew,Kyle Hurth,Drew Artrip,Adam T. Miller,Reza Assadsangabi
出处
期刊:Journal of Neuroimaging [Wiley]
卷期号:34 (5): 527-547
标识
DOI:10.1111/jon.13227
摘要

Abstract Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. Recent advances in imaging technology have expanded the purview of neuroradiologists, who play an increasingly important role in meningioma diagnosis and management. Tumor vascularity can now be determined using arterial spin labeling and dynamic susceptibility contrast‐enhanced sequences, allowing the neurosurgeon or neurointerventionalist to assess patient candidacy for preoperative embolization. Meningioma consistency can be inferred based on signal intensity; emerging machine learning technologies may soon allow radiologists to predict consistency long before the patient enters the operating room. Perfusion imaging coupled with magnetic resonance spectroscopy can be used to distinguish meningiomas from malignant meningioma mimics. In this comprehensive review, we describe key features of meningiomas that can be established through neuroimaging, including size, location, vascularity, consistency, and, in some cases, histologic grade. We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
睡到自然醒完成签到 ,获得积分10
1秒前
1秒前
萧水白应助神勇一寡采纳,获得10
2秒前
旺旺仙贝完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
greatsnow发布了新的文献求助10
5秒前
胖大海关注了科研通微信公众号
5秒前
坚强凝安发布了新的文献求助10
6秒前
坦率无剑发布了新的文献求助10
6秒前
郭郭完成签到,获得积分20
6秒前
wweiweili发布了新的文献求助10
6秒前
李萌萌发布了新的文献求助10
7秒前
7秒前
zjy03259完成签到,获得积分20
7秒前
追寻紫安应助Mmxn采纳,获得10
7秒前
8秒前
8秒前
金刚经应助爱笑的蜗牛采纳,获得10
8秒前
ff发布了新的文献求助10
9秒前
zz完成签到 ,获得积分10
9秒前
今后应助快乐寄风采纳,获得10
10秒前
10秒前
赵坤煊完成签到 ,获得积分10
10秒前
zjy03259发布了新的文献求助10
10秒前
12秒前
科研通AI2S应助精明人雄采纳,获得10
12秒前
12秒前
12秒前
坚强凝安完成签到,获得积分20
13秒前
WaveletZ完成签到,获得积分10
13秒前
宋莱文发布了新的文献求助10
13秒前
13秒前
无敌暗影龙神至尊王者完成签到,获得积分10
14秒前
sss完成签到,获得积分20
14秒前
zxcv发布了新的文献求助10
15秒前
zhy完成签到,获得积分10
15秒前
15秒前
清辉夜凝发布了新的文献求助10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260545
求助须知:如何正确求助?哪些是违规求助? 2901746
关于积分的说明 8316854
捐赠科研通 2571281
什么是DOI,文献DOI怎么找? 1396969
科研通“疑难数据库(出版商)”最低求助积分说明 653604
邀请新用户注册赠送积分活动 632040