亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 结晶学 化学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [Springer Nature]
卷期号:28 (1) 被引量:25
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
爱听歌的半凡完成签到,获得积分10
22秒前
帅气的曼雁完成签到 ,获得积分10
28秒前
ensue关注了科研通微信公众号
38秒前
ensue发布了新的文献求助10
48秒前
Xjx6519发布了新的文献求助10
1分钟前
情怀应助yyck采纳,获得10
1分钟前
上官若男应助Xjx6519采纳,获得10
1分钟前
思源应助烊驼采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
jhgg8009应助科研通管家采纳,获得60
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
jhgg8009应助科研通管家采纳,获得60
1分钟前
wanci应助opp采纳,获得80
1分钟前
依桉完成签到 ,获得积分10
1分钟前
甜美坤完成签到 ,获得积分10
1分钟前
所所应助Li采纳,获得10
2分钟前
谦让的博完成签到,获得积分10
2分钟前
2分钟前
魔法梅莉完成签到 ,获得积分10
2分钟前
Xjx6519发布了新的文献求助10
2分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
2分钟前
乐乐应助Xjx6519采纳,获得10
2分钟前
yyck发布了新的文献求助10
2分钟前
临子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Li发布了新的文献求助10
2分钟前
盐焗小星球完成签到 ,获得积分10
2分钟前
2分钟前
快乐的小蘑菇完成签到 ,获得积分10
2分钟前
烊驼发布了新的文献求助30
2分钟前
COIN_77完成签到 ,获得积分10
2分钟前
别当真完成签到 ,获得积分10
3分钟前
3分钟前
小橙子发布了新的文献求助10
3分钟前
月夕完成签到 ,获得积分10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558432
求助须知:如何正确求助?哪些是违规求助? 4643499
关于积分的说明 14671155
捐赠科研通 4584795
什么是DOI,文献DOI怎么找? 2515191
邀请新用户注册赠送积分活动 1489232
关于科研通互助平台的介绍 1459827