Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 结晶学 化学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [Springer Nature]
卷期号:28 (1) 被引量:25
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
单身的大娘完成签到,获得积分10
2秒前
3秒前
赘婿应助aaaaa采纳,获得10
3秒前
立里发布了新的文献求助10
3秒前
圈圈发布了新的文献求助20
5秒前
WYQ发布了新的文献求助10
6秒前
贤惠的老黑完成签到 ,获得积分10
6秒前
6秒前
朴素八宝粥完成签到,获得积分10
6秒前
澎鱼盐发布了新的文献求助10
7秒前
wlscj应助琼0217采纳,获得20
7秒前
许子健发布了新的文献求助10
8秒前
blue完成签到,获得积分10
8秒前
8秒前
丘比特应助glycine采纳,获得10
9秒前
CipherSage应助我是一只猫采纳,获得10
9秒前
无花果应助cbz采纳,获得10
10秒前
yudabaoer发布了新的文献求助10
10秒前
安静代萱完成签到 ,获得积分10
10秒前
华仔应助张中山采纳,获得10
11秒前
泡芙完成签到 ,获得积分10
12秒前
12秒前
orixero应助姚友进采纳,获得10
12秒前
不倦发布了新的文献求助10
14秒前
研晓晓发布了新的文献求助10
14秒前
15秒前
踏实天亦完成签到,获得积分10
15秒前
xunuo完成签到,获得积分10
17秒前
18秒前
xuexuezi关注了科研通微信公众号
18秒前
求助者发布了新的文献求助30
18秒前
18秒前
55关注了科研通微信公众号
20秒前
20秒前
背后橘子完成签到,获得积分10
21秒前
豆豆发布了新的文献求助10
21秒前
Owen应助清新的问枫采纳,获得10
21秒前
尔玉完成签到 ,获得积分10
22秒前
cbz发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534