已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 化学 结晶学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [BioMed Central]
卷期号:28 (1) 被引量:15
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默寻凝完成签到,获得积分10
1秒前
5秒前
apocalypse完成签到 ,获得积分10
10秒前
周多多发布了新的文献求助10
12秒前
风趣的芝麻完成签到 ,获得积分10
17秒前
芯之痕发布了新的文献求助10
18秒前
21秒前
21秒前
21秒前
qzw完成签到,获得积分10
24秒前
zyj完成签到,获得积分10
25秒前
ly发布了新的文献求助10
28秒前
28秒前
斯文败类应助芯之痕采纳,获得10
29秒前
Ethan完成签到 ,获得积分0
32秒前
稳重筝发布了新的文献求助10
34秒前
伽拉完成签到,获得积分10
37秒前
科研通AI2S应助zero1122采纳,获得10
37秒前
38秒前
伽拉发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
44秒前
ly完成签到,获得积分10
45秒前
周多多完成签到,获得积分20
45秒前
47秒前
fa完成签到,获得积分10
47秒前
稳重筝完成签到,获得积分20
48秒前
52秒前
Rory完成签到 ,获得积分10
52秒前
lQ发布了新的文献求助10
52秒前
54秒前
CipherSage应助伽拉采纳,获得10
55秒前
zhangzhi发布了新的文献求助10
56秒前
Rondab应助钱邦国采纳,获得200
56秒前
芯之痕发布了新的文献求助10
58秒前
WJane完成签到,获得积分10
1分钟前
菜青虫完成签到,获得积分10
1分钟前
在水一方应助zty123采纳,获得10
1分钟前
1分钟前
eric888应助zhuant采纳,获得80
1分钟前
聂先生完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204422
捐赠科研通 3257298
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877842
科研通“疑难数据库(出版商)”最低求助积分说明 806595