亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 结晶学 化学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [Springer Nature]
卷期号:28 (1) 被引量:25
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
桦奕兮完成签到 ,获得积分10
6秒前
yangjoy完成签到 ,获得积分10
10秒前
科研通AI2S应助辛巴采纳,获得10
21秒前
26秒前
实验室应助内向雪旋采纳,获得200
33秒前
量子星尘发布了新的文献求助10
35秒前
43秒前
小二郎应助bbbccc采纳,获得10
44秒前
49秒前
YuxinChen完成签到 ,获得积分10
50秒前
1分钟前
赘婿应助jewelliang采纳,获得10
1分钟前
1分钟前
jewelliang发布了新的文献求助10
1分钟前
jewelliang完成签到,获得积分10
1分钟前
七色光完成签到,获得积分10
1分钟前
小高由于求助违规,被管理员扣积分20
2分钟前
2分钟前
JACE完成签到 ,获得积分10
2分钟前
2分钟前
明理飞风发布了新的文献求助10
2分钟前
明理飞风完成签到,获得积分10
2分钟前
2分钟前
饼子完成签到 ,获得积分10
2分钟前
NiNi完成签到 ,获得积分10
2分钟前
orangel发布了新的文献求助10
2分钟前
搜集达人应助orangel采纳,获得10
3分钟前
3分钟前
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
无敌霸王花应助null采纳,获得30
3分钟前
畅畅发布了新的文献求助10
3分钟前
宝石发布了新的文献求助10
3分钟前
辛巴发布了新的文献求助10
3分钟前
宝石完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122912
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692