Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 化学 结晶学
作者
Chengjian Guan,Angwei Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [Springer Nature]
卷期号:28 (1) 被引量:1
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助wjx采纳,获得10
2秒前
打打应助wjx采纳,获得30
2秒前
JamesPei应助wjx采纳,获得10
2秒前
可爱的函函应助wjx采纳,获得10
2秒前
深情安青应助wjx采纳,获得10
2秒前
在水一方应助wjx采纳,获得10
3秒前
科研通AI2S应助wjx采纳,获得10
3秒前
氮三氟甲基应助wjx采纳,获得10
3秒前
FashionBoy应助wjx采纳,获得30
3秒前
天天快乐应助wjx采纳,获得10
3秒前
ding应助一一采纳,获得10
4秒前
weishen完成签到,获得积分0
4秒前
4秒前
福尔摩曦完成签到,获得积分10
5秒前
5秒前
Feng发布了新的文献求助10
5秒前
聪明可爱小绘理应助高磊采纳,获得10
6秒前
wt完成签到,获得积分10
7秒前
444关闭了444文献求助
8秒前
ZYQ完成签到 ,获得积分10
8秒前
苏苏完成签到,获得积分10
9秒前
9秒前
9秒前
高大黄蜂完成签到,获得积分10
10秒前
新青年应助gmc采纳,获得10
10秒前
勤劳落雁发布了新的文献求助10
10秒前
超帅的从菡完成签到 ,获得积分10
10秒前
leena发布了新的文献求助10
10秒前
斯文败类应助Hh采纳,获得10
11秒前
高大黄蜂发布了新的文献求助10
12秒前
英姑应助guygun采纳,获得10
12秒前
Feng完成签到,获得积分10
13秒前
14秒前
花花完成签到,获得积分10
14秒前
一言矣完成签到 ,获得积分10
15秒前
海绵宝宝完成签到,获得积分10
16秒前
贪吃的猴子完成签到,获得积分10
16秒前
long完成签到 ,获得积分10
17秒前
研友_LOqqmZ发布了新的文献求助10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824