Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 化学 结晶学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [BioMed Central]
卷期号:28 (1) 被引量:15
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hanabi发布了新的文献求助10
1秒前
2秒前
2秒前
joey完成签到,获得积分10
2秒前
我是老大应助张玉采纳,获得10
2秒前
2秒前
嘟嘟发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Cici发布了新的文献求助10
4秒前
诸葛藏藏发布了新的文献求助10
5秒前
星辰大海应助summer采纳,获得10
5秒前
6秒前
波比发布了新的文献求助10
6秒前
dyem发布了新的文献求助10
6秒前
洪山老狗完成签到,获得积分20
6秒前
6秒前
fangy34完成签到,获得积分10
7秒前
郭志晟完成签到,获得积分10
8秒前
研途完成签到,获得积分10
8秒前
亦安发布了新的文献求助30
10秒前
行7发布了新的文献求助10
10秒前
丘比特应助鉨汏闫采纳,获得10
10秒前
郭志晟发布了新的文献求助10
11秒前
12秒前
tzh发布了新的文献求助10
12秒前
13秒前
balko发布了新的文献求助100
14秒前
14秒前
14秒前
夏天不回来完成签到,获得积分10
14秒前
桃桃完成签到,获得积分10
15秒前
16秒前
Hello应助诸葛藏藏采纳,获得10
16秒前
夕夕口口发布了新的文献求助10
17秒前
123发布了新的文献求助10
18秒前
19秒前
Kin_L应助Xu采纳,获得10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970004
求助须知:如何正确求助?哪些是违规求助? 3514701
关于积分的说明 11175468
捐赠科研通 3250051
什么是DOI,文献DOI怎么找? 1795187
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804925