Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 化学 结晶学
作者
Chengjian Guan,A. Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [BioMed Central]
卷期号:28 (1) 被引量:17
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
immm发布了新的文献求助10
2秒前
腾腾腾完成签到,获得积分10
4秒前
8秒前
科研通AI5应助大橙子采纳,获得10
9秒前
Rubby应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
俏皮火完成签到 ,获得积分10
10秒前
一一一应助Bin_Liu采纳,获得10
10秒前
11秒前
啾啾啾完成签到,获得积分20
12秒前
Wang完成签到,获得积分10
13秒前
15秒前
啾啾啾发布了新的文献求助10
15秒前
CHSLN完成签到 ,获得积分10
16秒前
biofresh发布了新的文献求助30
16秒前
16秒前
17秒前
超级无敌奥特大王完成签到,获得积分10
17秒前
NexusExplorer应助小包子采纳,获得10
17秒前
努力向前看完成签到,获得积分10
19秒前
19秒前
19秒前
agnes完成签到,获得积分10
20秒前
失眠的向日葵完成签到 ,获得积分10
20秒前
大橙子发布了新的文献求助10
21秒前
23秒前
24秒前
qq完成签到,获得积分10
25秒前
王二哈完成签到,获得积分10
26秒前
行者无疆发布了新的文献求助10
27秒前
令散内方完成签到,获得积分10
27秒前
外向的雁玉完成签到,获得积分10
27秒前
慧灰huihui发布了新的文献求助10
28秒前
Ava应助Desire采纳,获得10
29秒前
量子星尘发布了新的文献求助10
32秒前
风信子完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022