亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study

医学 病危 心房颤动 重症监护医学 中心(范畴论) 急诊医学 机器学习 人工智能 内科学 计算机科学 化学 结晶学
作者
Chengjian Guan,Angwei Gong,Yan Zhao,Chen Yin,Lu Geng,Linli Liu,Xiuchun Yang,Jingchao Lu,Bing Xiao
出处
期刊:Critical Care [Springer Nature]
卷期号:28 (1)
标识
DOI:10.1186/s13054-024-05138-0
摘要

New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learning (ML). The data came from two non-overlapping datasets from the Medical Information Mart for Intensive Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model performance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations (SHAP) method was used for visualizing model characteristics and individual case predictions. Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probability greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use. We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隔壁小黄完成签到 ,获得积分10
18秒前
wan完成签到 ,获得积分10
53秒前
科研通AI2S应助司徒无剑采纳,获得10
1分钟前
1分钟前
Yang发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
董小妍完成签到 ,获得积分10
1分钟前
朱可芯完成签到,获得积分20
1分钟前
朱可芯发布了新的文献求助10
1分钟前
Singularity应助朱可芯采纳,获得10
1分钟前
科研通AI2S应助Yang采纳,获得10
1分钟前
1分钟前
Yang完成签到,获得积分10
2分钟前
阿治完成签到 ,获得积分10
2分钟前
轻松的采柳完成签到 ,获得积分10
2分钟前
2分钟前
咯咯咯发布了新的文献求助20
2分钟前
2分钟前
2分钟前
领导范儿应助走下班了采纳,获得10
2分钟前
2分钟前
yamo发布了新的文献求助30
2分钟前
2分钟前
SciGPT应助平淡的芷蕊采纳,获得10
2分钟前
2分钟前
XL神放发布了新的文献求助20
3分钟前
CodeCraft应助countingrabbit采纳,获得10
3分钟前
852应助三木采纳,获得10
3分钟前
封似狮完成签到,获得积分10
3分钟前
zzeru21发布了新的文献求助150
3分钟前
3分钟前
韩韩完成签到 ,获得积分10
3分钟前
3分钟前
烟花应助咯咯咯采纳,获得10
3分钟前
走下班了完成签到,获得积分10
3分钟前
走下班了发布了新的文献求助10
3分钟前
三木发布了新的文献求助10
3分钟前
无情的mm完成签到 ,获得积分10
3分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133920
求助须知:如何正确求助?哪些是违规求助? 2784809
关于积分的说明 7768627
捐赠科研通 2440175
什么是DOI,文献DOI怎么找? 1297190
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791