Rapid identification of bloodstream infection pathogens and drug resistance using Raman spectroscopy enhanced by convolutional neural networks

卷积神经网络 鉴定(生物学) 抗药性 微生物学 拉曼光谱 计算生物学 生物 计算机科学 人工智能 物理 生态学 光学
作者
Haiquan Kang,Ziling Wang,Jingfang Sun,Shuang Song,Lei Cheng,Yi Sun,Xingqi Pan,Changyu Wu,Ping Gong,Hong‐Chun Li
出处
期刊:Frontiers in Microbiology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fmicb.2024.1428304
摘要

Bloodstream infections (BSIs) are a critical medical concern, characterized by elevated morbidity, mortality, extended hospital stays, substantial healthcare costs, and diagnostic challenges. The clinical outcomes for patients with BSI can be markedly improved through the prompt identification of the causative pathogens and their susceptibility to antibiotics and antimicrobial agents. Traditional BSI diagnosis via blood culture is often hindered by its lengthy incubation period and its limitations in detecting pathogenic bacteria and their resistance profiles. Surface-enhanced Raman scattering (SERS) has recently gained prominence as a rapid and effective technique for identifying pathogenic bacteria and assessing drug resistance. This method offers molecular fingerprinting with benefits such as rapidity, sensitivity, and non-destructiveness. The objective of this study was to integrate deep learning (DL) with SERS for the rapid identification of common pathogens and their resistance to drugs in BSIs. To assess the feasibility of combining DL with SERS for direct detection, erythrocyte lysis and differential centrifugation were employed to isolate bacteria from blood samples with positive blood cultures. A total of 12,046 and 11,968 SERS spectra were collected from the two methods using Raman spectroscopy and subsequently analyzed using DL algorithms. The findings reveal that convolutional neural networks (CNNs) exhibit considerable potential in identifying prevalent pathogens and their drug-resistant strains. The differential centrifugation technique outperformed erythrocyte lysis in bacterial isolation from blood, achieving a detection accuracy of 98.68% for pathogenic bacteria and an impressive 99.85% accuracy in identifying carbapenem-resistant
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得20
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
手机应助科研通管家采纳,获得10
2秒前
Lucas应助废物自救采纳,获得10
2秒前
cheng应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
CodeCraft应助dablack采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
marin完成签到,获得积分20
3秒前
手机应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
5秒前
活力的bird完成签到,获得积分10
5秒前
6秒前
爱静静应助研友_nPbeR8采纳,获得10
7秒前
香蕉觅云应助我不吃葱采纳,获得10
7秒前
HH完成签到 ,获得积分10
8秒前
完美世界应助水心采纳,获得10
8秒前
maji完成签到,获得积分20
9秒前
在远方发布了新的文献求助10
10秒前
11秒前
qyliu发布了新的文献求助10
11秒前
RUSeries完成签到,获得积分10
11秒前
111完成签到,获得积分10
13秒前
废物自救完成签到,获得积分10
13秒前
花仙子发布了新的文献求助10
13秒前
柳叶小弯刀完成签到,获得积分10
14秒前
李爱国应助MasterE采纳,获得20
14秒前
15秒前
16秒前
16秒前
sjsjjj发布了新的文献求助10
16秒前
16秒前
尹文发布了新的文献求助10
17秒前
maji发布了新的文献求助10
19秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343491
求助须知:如何正确求助?哪些是违规求助? 2970529
关于积分的说明 8644400
捐赠科研通 2650596
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661536