Deep learning-based segmentation for high-dose-rate brachytherapy in cervical cancer using 3D Prompt-ResUNet

医学 宫颈癌 近距离放射治疗 百分位 核医学 豪斯多夫距离 雅卡索引 分割 磁共振成像 放射科 癌症 放射治疗 人工智能 计算机科学 数学 模式识别(心理学) 内科学 统计
作者
Xian Xue,Lining Sun,Dazhu Liang,Jingyang Zhu,Lele Liu,Quanfu Sun,Hefeng Liu,Jianwei Gao,Xiaosha Fu,Jingjing Ding,Xiangkun Dai,Laiyuan Tao,Jinsheng Cheng,Tengxiang Li,Fugen Zhou
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6560/ad7ad1
摘要

Abstract Objective. To develop and evaluate a 3D Prompt-ResUNet module that utilized the prompt-based model combined with 3D nnUNet for rapid and consistent autosegmentation of high-risk clinical target volume and organ at risk in high-dose-rate brachytherapy for cervical cancer patients. 
Approach. We used 73 computed tomography (CT) and 62 magnetic resonance imaging (MRI) scans from 135 (103 for training, 16 for validation, and 16 for testing) cervical cancer patients across two hospitals for HRCTV and OAR segmentation. A novel comparison of the deep learning neural networks 3D Prompt-ResUNet, nnUNet, and SAM-Med3D was applied for the segmentation. Evaluation was conducted in two parts: geometric and clinical assessments. Quantitative metrics included the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95%), Jaccard index (JI), and Matthews correlation coefficient (MCC). Clinical evaluation involved interobserver comparison, 4-grade expert scoring, and a double-blinded Turing test.
Main results. The Prompt-ResUNet model performed most similarly to experienced radiation oncologists, outperforming less experienced ones. During testing, the DSC, HD95% (mm), JI, and MCC value (mean ± SD) for HRCTV were 0.92±0.03, 2.91 ± 0.69, 0.85± 0.04, and 0.92 ± 0.02, respectively. For the bladder, these values were 0.93 ± 0.05, 3.07 ± 1.05, 0.87 ± 0.08, and 0.93 ± 0.05, respectively. For the rectum, they were 0.87 ± 0.03, 3.54 ± 1.46, 0.78 ± 0.05, and 0.87 ± 0.03, respectively. For the sigmoid, they were 0.76 ± 0.11, 7.54 ± 5.54, 0.63 ± 0.14, and 0.78 ± 0.09, respectively. The Prompt-ResUNet achieved a clinical viability score of at least 2 in all evaluation cases (100%) for both HRCTV and bladder and exceeded the 30% positive rate benchmark for all evaluated structures in the Turing test.
Significance. The Prompt-ResUNet architecture demonstrated high consistency with ground truth (GT) in autosegmentation of HRCTV and OARs, reducing interobserver variability and shortening treatment times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助坚定的又莲采纳,获得10
3秒前
感性的觅夏完成签到,获得积分10
4秒前
细心的柏柳应助wuyu采纳,获得10
5秒前
5秒前
6秒前
tt完成签到,获得积分10
6秒前
7秒前
个性擎完成签到,获得积分20
7秒前
NexusExplorer应助汪汪采纳,获得10
8秒前
yp发布了新的文献求助10
9秒前
淡然冬灵发布了新的文献求助10
11秒前
陈无敌完成签到 ,获得积分10
11秒前
范占豪发布了新的文献求助10
11秒前
天天快乐应助碧蓝的觅露采纳,获得10
11秒前
咯噔发布了新的文献求助10
12秒前
无奈的石头完成签到,获得积分20
12秒前
儒雅雪柳发布了新的文献求助20
12秒前
12秒前
yuyuyu完成签到,获得积分10
15秒前
火华完成签到,获得积分10
16秒前
16秒前
FashionBoy应助等风来采纳,获得10
17秒前
碧蓝的觅露完成签到,获得积分20
18秒前
18秒前
19秒前
Japrin完成签到,获得积分10
20秒前
烤番薯发布了新的文献求助10
21秒前
zzy发布了新的文献求助10
22秒前
24秒前
111发布了新的文献求助10
24秒前
pluto应助儒雅雪柳采纳,获得10
26秒前
badyoungboy发布了新的文献求助10
27秒前
29秒前
小马甲应助HeLL0采纳,获得10
30秒前
nn666发布了新的文献求助10
30秒前
30秒前
31秒前
张叮当发布了新的文献求助10
32秒前
zzzzzzzzzzzzb发布了新的文献求助10
34秒前
111完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737724
求助须知:如何正确求助?哪些是违规求助? 3281359
关于积分的说明 10024958
捐赠科研通 2998099
什么是DOI,文献DOI怎么找? 1645066
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749814