FDGNet: Frequency Disentanglement and Data Geometry for Domain Generalization in Cross-Scene Hyperspectral Image Classification

高光谱成像 一般化 频域 人工智能 图像(数学) 计算机科学 数学 模式识别(心理学) 计算机视觉 数学分析
作者
Boao Qin,Shou Feng,Chunhui Zhao,Bobo Xi,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2024.3445136
摘要

Cross-scene hyperspectral image classification (HSIC) poses a significant challenge in recognizing hyperspectral images (HSIs) from different domains. The current mainstream approaches based on domain adaptation (DA) methods need to access target data when aligning distributions between domains, limiting the applicability of the model. In contrast, recent domain generalization (DG) methods aim to directly generalize to unseen domains, eliminating the requirements for target data during training. Nonetheless, most DG-based methods overly focus on randomizing sample styles, leading to semantically compromised samples. In addition, broadening the source distribution without ensuring reasonable support may result in undesired extended distributions. To address these issues, we propose a novel DG network with frequency disentanglement and data geometry (FDGNet) for cross-scene HSIC. Specifically, we first develop a spectral-spatial encoder based on frequency disentanglement (FDSS encoder), which facilitates synthesized domains to preserve their semantic consistency while simulating interdomain gaps with the source domain. Second, to avoid the generation of unrealistic samples, we incorporate data geometry into adversarial training. This helps diversify new domains while keeping the data geometry of extended domains in an explainable support. To improve the learning of domain-invariant representation, we propose an intermediate domain sampling strategy based on the class-wise perceptual manifold. This strategy synthesizes reliable intermediate domains by sampling from class-wise manifold flows estimated over the source and extended domains. Extensive experiments and analysis on three public HSI datasets yield the superiority of our proposed FDGNet. The codes will be available from the website: https://github.com/Qba-heu/FDGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TD发布了新的文献求助10
1秒前
DIY101发布了新的文献求助10
1秒前
2秒前
无花果应助风趣采白采纳,获得10
2秒前
2秒前
2秒前
开心尔芙发布了新的文献求助30
3秒前
雨慧发布了新的文献求助10
3秒前
3秒前
世纪完成签到,获得积分10
4秒前
wjfjs2cd完成签到,获得积分10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Bio应助科研通管家采纳,获得50
4秒前
共享精神应助科研通管家采纳,获得20
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
pluto应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
CR7应助科研通管家采纳,获得20
5秒前
Bio应助科研通管家采纳,获得50
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
CyrusSo524应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得30
6秒前
小二郎应助kk采纳,获得10
6秒前
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
caojj完成签到 ,获得积分10
6秒前
6秒前
6秒前
SciGPT应助Amorfati采纳,获得10
7秒前
LU发布了新的文献求助10
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060