亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FDGNet: Frequency Disentanglement and Data Geometry for Domain Generalization in Cross-Scene Hyperspectral Image Classification

高光谱成像 一般化 频域 人工智能 图像(数学) 计算机科学 数学 模式识别(心理学) 计算机视觉 数学分析
作者
Boao Qin,Shou Feng,Chunhui Zhao,Bobo Xi,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2024.3445136
摘要

Cross-scene hyperspectral image classification (HSIC) poses a significant challenge in recognizing hyperspectral images (HSIs) from different domains. The current mainstream approaches based on domain adaptation (DA) methods need to access target data when aligning distributions between domains, limiting the applicability of the model. In contrast, recent domain generalization (DG) methods aim to directly generalize to unseen domains, eliminating the requirements for target data during training. Nonetheless, most DG-based methods overly focus on randomizing sample styles, leading to semantically compromised samples. In addition, broadening the source distribution without ensuring reasonable support may result in undesired extended distributions. To address these issues, we propose a novel DG network with frequency disentanglement and data geometry (FDGNet) for cross-scene HSIC. Specifically, we first develop a spectral-spatial encoder based on frequency disentanglement (FDSS encoder), which facilitates synthesized domains to preserve their semantic consistency while simulating interdomain gaps with the source domain. Second, to avoid the generation of unrealistic samples, we incorporate data geometry into adversarial training. This helps diversify new domains while keeping the data geometry of extended domains in an explainable support. To improve the learning of domain-invariant representation, we propose an intermediate domain sampling strategy based on the class-wise perceptual manifold. This strategy synthesizes reliable intermediate domains by sampling from class-wise manifold flows estimated over the source and extended domains. Extensive experiments and analysis on three public HSI datasets yield the superiority of our proposed FDGNet. The codes will be available from the website: https://github.com/Qba-heu/FDGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfaqing942完成签到 ,获得积分10
8秒前
顺利的尔芙完成签到,获得积分10
19秒前
30秒前
xaogny发布了新的文献求助10
32秒前
然然然后发布了新的文献求助10
36秒前
搜集达人应助冷酷的夜雪采纳,获得30
38秒前
打打应助xaogny采纳,获得10
39秒前
所所应助然然然后采纳,获得10
42秒前
49秒前
55秒前
冷酷的夜雪完成签到,获得积分20
1分钟前
Charlie完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
xaogny发布了新的文献求助10
1分钟前
1分钟前
在水一方应助xaogny采纳,获得10
1分钟前
飘着的鬼发布了新的文献求助30
1分钟前
1分钟前
共享精神应助zzr采纳,获得10
2分钟前
无端发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分0
2分钟前
3分钟前
CRUSADER发布了新的文献求助10
3分钟前
3分钟前
3分钟前
CRUSADER完成签到,获得积分10
3分钟前
3分钟前
xaogny发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI5应助Yanz采纳,获得10
4分钟前
4分钟前
Yanz完成签到,获得积分10
4分钟前
Yanz发布了新的文献求助10
4分钟前
zxcvvbb1001完成签到 ,获得积分10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
打打应助gtgwm采纳,获得10
6分钟前
tt完成签到 ,获得积分20
6分钟前
李健的小迷弟应助Mr采纳,获得10
6分钟前
yukky完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918223
求助须知:如何正确求助?哪些是违规求助? 4190929
关于积分的说明 13015485
捐赠科研通 3960690
什么是DOI,文献DOI怎么找? 2171335
邀请新用户注册赠送积分活动 1189393
关于科研通互助平台的介绍 1097754