高光谱成像
一般化
频域
人工智能
图像(数学)
计算机科学
数学
模式识别(心理学)
计算机视觉
数学分析
作者
Boao Qin,Shou Feng,Chunhui Zhao,Bobo Xi,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-14
被引量:2
标识
DOI:10.1109/tnnls.2024.3445136
摘要
Cross-scene hyperspectral image classification (HSIC) poses a significant challenge in recognizing hyperspectral images (HSIs) from different domains. The current mainstream approaches based on domain adaptation (DA) methods need to access target data when aligning distributions between domains, limiting the applicability of the model. In contrast, recent domain generalization (DG) methods aim to directly generalize to unseen domains, eliminating the requirements for target data during training. Nonetheless, most DG-based methods overly focus on randomizing sample styles, leading to semantically compromised samples. In addition, broadening the source distribution without ensuring reasonable support may result in undesired extended distributions. To address these issues, we propose a novel DG network with frequency disentanglement and data geometry (FDGNet) for cross-scene HSIC. Specifically, we first develop a spectral-spatial encoder based on frequency disentanglement (FDSS encoder), which facilitates synthesized domains to preserve their semantic consistency while simulating interdomain gaps with the source domain. Second, to avoid the generation of unrealistic samples, we incorporate data geometry into adversarial training. This helps diversify new domains while keeping the data geometry of extended domains in an explainable support. To improve the learning of domain-invariant representation, we propose an intermediate domain sampling strategy based on the class-wise perceptual manifold. This strategy synthesizes reliable intermediate domains by sampling from class-wise manifold flows estimated over the source and extended domains. Extensive experiments and analysis on three public HSI datasets yield the superiority of our proposed FDGNet. The codes will be available from the website: https://github.com/Qba-heu/FDGNet.
科研通智能强力驱动
Strongly Powered by AbleSci AI