FDGNet: Frequency Disentanglement and Data Geometry for Domain Generalization in Cross-Scene Hyperspectral Image Classification

高光谱成像 一般化 频域 人工智能 图像(数学) 计算机科学 数学 模式识别(心理学) 计算机视觉 数学分析
作者
Boao Qin,Shou Feng,Chunhui Zhao,Bobo Xi,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2024.3445136
摘要

Cross-scene hyperspectral image classification (HSIC) poses a significant challenge in recognizing hyperspectral images (HSIs) from different domains. The current mainstream approaches based on domain adaptation (DA) methods need to access target data when aligning distributions between domains, limiting the applicability of the model. In contrast, recent domain generalization (DG) methods aim to directly generalize to unseen domains, eliminating the requirements for target data during training. Nonetheless, most DG-based methods overly focus on randomizing sample styles, leading to semantically compromised samples. In addition, broadening the source distribution without ensuring reasonable support may result in undesired extended distributions. To address these issues, we propose a novel DG network with frequency disentanglement and data geometry (FDGNet) for cross-scene HSIC. Specifically, we first develop a spectral-spatial encoder based on frequency disentanglement (FDSS encoder), which facilitates synthesized domains to preserve their semantic consistency while simulating interdomain gaps with the source domain. Second, to avoid the generation of unrealistic samples, we incorporate data geometry into adversarial training. This helps diversify new domains while keeping the data geometry of extended domains in an explainable support. To improve the learning of domain-invariant representation, we propose an intermediate domain sampling strategy based on the class-wise perceptual manifold. This strategy synthesizes reliable intermediate domains by sampling from class-wise manifold flows estimated over the source and extended domains. Extensive experiments and analysis on three public HSI datasets yield the superiority of our proposed FDGNet. The codes will be available from the website: https://github.com/Qba-heu/FDGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒发布了新的文献求助20
刚刚
shenrenye发布了新的文献求助10
刚刚
DDU发布了新的文献求助10
1秒前
LiTianHao完成签到,获得积分10
1秒前
Akim应助pai采纳,获得10
2秒前
思源应助无情向梦采纳,获得10
2秒前
李小强完成签到,获得积分10
2秒前
fkhuny完成签到,获得积分10
2秒前
OneOne发布了新的文献求助10
2秒前
王kk发布了新的文献求助10
2秒前
lilili应助blossom采纳,获得10
4秒前
szj完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
打打应助他方世界采纳,获得10
5秒前
冷傲的xu发布了新的文献求助20
6秒前
乌龟发布了新的文献求助10
7秒前
无花果应助Cody采纳,获得10
7秒前
8秒前
8秒前
小蘑菇应助DDU采纳,获得10
8秒前
zzz完成签到,获得积分10
9秒前
星辰大海应助申燕婷采纳,获得10
9秒前
9秒前
自信安荷完成签到,获得积分10
10秒前
10秒前
传奇3应助Antonio采纳,获得10
10秒前
苍鹭完成签到,获得积分10
11秒前
Cassie完成签到,获得积分10
11秒前
廉6666完成签到,获得积分10
11秒前
星辰大海应助_Q七采纳,获得10
12秒前
思源应助典雅的俊驰采纳,获得10
12秒前
12秒前
13秒前
善学以致用应助shenrenye采纳,获得10
13秒前
13秒前
tianmafei发布了新的文献求助10
14秒前
张烤明完成签到,获得积分10
14秒前
15秒前
OneOne完成签到,获得积分20
16秒前
廉6666发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489969
求助须知:如何正确求助?哪些是违规求助? 4588744
关于积分的说明 14420741
捐赠科研通 4520420
什么是DOI,文献DOI怎么找? 2476681
邀请新用户注册赠送积分活动 1462196
关于科研通互助平台的介绍 1435085