FDGNet: Frequency Disentanglement and Data Geometry for Domain Generalization in Cross-Scene Hyperspectral Image Classification

高光谱成像 一般化 频域 人工智能 图像(数学) 计算机科学 数学 模式识别(心理学) 计算机视觉 数学分析
作者
Boao Qin,Shou Feng,Chunhui Zhao,Bobo Xi,Wei Li,Ran Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2024.3445136
摘要

Cross-scene hyperspectral image classification (HSIC) poses a significant challenge in recognizing hyperspectral images (HSIs) from different domains. The current mainstream approaches based on domain adaptation (DA) methods need to access target data when aligning distributions between domains, limiting the applicability of the model. In contrast, recent domain generalization (DG) methods aim to directly generalize to unseen domains, eliminating the requirements for target data during training. Nonetheless, most DG-based methods overly focus on randomizing sample styles, leading to semantically compromised samples. In addition, broadening the source distribution without ensuring reasonable support may result in undesired extended distributions. To address these issues, we propose a novel DG network with frequency disentanglement and data geometry (FDGNet) for cross-scene HSIC. Specifically, we first develop a spectral-spatial encoder based on frequency disentanglement (FDSS encoder), which facilitates synthesized domains to preserve their semantic consistency while simulating interdomain gaps with the source domain. Second, to avoid the generation of unrealistic samples, we incorporate data geometry into adversarial training. This helps diversify new domains while keeping the data geometry of extended domains in an explainable support. To improve the learning of domain-invariant representation, we propose an intermediate domain sampling strategy based on the class-wise perceptual manifold. This strategy synthesizes reliable intermediate domains by sampling from class-wise manifold flows estimated over the source and extended domains. Extensive experiments and analysis on three public HSI datasets yield the superiority of our proposed FDGNet. The codes will be available from the website: https://github.com/Qba-heu/FDGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
古月完成签到,获得积分10
1秒前
1秒前
等待黎明完成签到,获得积分10
1秒前
aayu完成签到,获得积分20
2秒前
萧萧萧完成签到,获得积分10
3秒前
KEHUGE完成签到,获得积分10
3秒前
不倦应助邓邓采纳,获得10
3秒前
Mandy完成签到,获得积分10
3秒前
半颗橙子发布了新的文献求助10
4秒前
5秒前
humorr完成签到,获得积分10
5秒前
快乐战神没烦恼完成签到,获得积分10
5秒前
穆奕完成签到 ,获得积分10
5秒前
淋山河完成签到,获得积分10
5秒前
blue完成签到,获得积分10
6秒前
胖鱼丁完成签到,获得积分10
6秒前
smh发布了新的文献求助10
6秒前
more完成签到,获得积分10
7秒前
7秒前
禤X完成签到,获得积分10
7秒前
Kuhaku完成签到,获得积分10
8秒前
好事成双完成签到,获得积分10
8秒前
王肄博完成签到 ,获得积分10
8秒前
小周完成签到,获得积分10
8秒前
9秒前
bmhs2017应助chen采纳,获得10
9秒前
傲娇丹翠完成签到,获得积分10
9秒前
9秒前
nihao完成签到,获得积分10
9秒前
9秒前
kkk完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
卅S发布了新的文献求助10
11秒前
TORCH完成签到 ,获得积分0
11秒前
11秒前
11秒前
小鸡别吃啦完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5395898
求助须知:如何正确求助?哪些是违规求助? 4516372
关于积分的说明 14059288
捐赠科研通 4428272
什么是DOI,文献DOI怎么找? 2432028
邀请新用户注册赠送积分活动 1424218
关于科研通互助平台的介绍 1403436