Spectral polarization imaging is critical for broad applications ranging from remote sensing to biomedicine. Here, we propose and experimentally demonstrate an imaging spectropolarimeter based on a single multifunctional metasurface. The designed metasurface accurately maps spectral and polarization information onto focal points and vortex beams, enabling simultaneous detection through intensity distributions. More specifically, spectral detection is achieved by determining the azimuthal angle of the strongest focal point, while polarization detection is accomplished by synthesizing the intensity of focal points and the interference pattern of output vortex beams. Experimental results indicate the successful reconstruction for six discrete wavelengths, with the average relative polarization error ranging from 7.85% to 13%. Additionally, the metasurface exhibits excellent imaging and edge detection capabilities owing to the focusing properties and the generation of vortex beams, achieving an imaging resolution of up to 1.4-fold wavelength and offering a new solution for a wide range of applications.