Single snapshot spatial frequency domain imaging with real-time 3D profile correction

光学 快照(计算机存储) 空间频率 频域 计算机科学 物理 计算机视觉 操作系统
作者
Kun Sheng,Yang Zhang,Chengzhi Wu,Jingshu Ni,Yao Huang,Zhongsheng Li,Meili Dong,Yikun Wang,Yong Liu,Yuanzhi Zhang
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (21): 36888-36888
标识
DOI:10.1364/oe.537056
摘要

We have proposed a novel single-snapshot spatial frequency domain imaging method with synchronous three-dimensional (3D) profile correction that addresses the confounding effects of involuntary jitter in tissue under examination and the 3D profile of the tissue on the measurements of optical parameters during in vivo examinations. I. In this scheme, orthogonal composite sinusoidal modulated light is projected onto the tissue to be measured. The single-snapshot multi-frequency demodulation theory, combined with the different sensitivity of different directional fringes to heights, simultaneously recovers the 3D profile and the modulated diffuse reflectance of the tissue to be measured. Finally, the modulated diffuse reflectance is corrected by establishing the correction function of height and angle versus modulated diffuse reflectance, and the optical parameters of the tissue are inverted by the diffusion model. The accuracy of the 3D profile measurement of the scheme was verified using models with different morphologies, and the mean value of the measurement error was found to be lower than 3%. The accuracy of modulation diffuse reflectance measurement was verified using a hemispherical homogeneous phantom made of PTFE. After correction with this method, the standard deviation of the measured diffuse reflectance is reduced by up to 72.2%. Finally, the measurement effect of optical parameters is verified by in vivo experiments and compared with the standard three-phase method. The results demonstrated that the 3D-SSMD method exhibits enhanced stability and efficiency. This introduces an innovative technology for achieving real-time spatial frequency domain imaging, applicable in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
火烧眉毛完成签到,获得积分10
刚刚
心灵美的修杰完成签到,获得积分10
1秒前
积极晓兰发布了新的文献求助10
1秒前
astronautadam发布了新的文献求助10
1秒前
1秒前
1秒前
hc完成签到 ,获得积分10
1秒前
在水一方应助cadnash采纳,获得10
2秒前
冬日无畏发布了新的文献求助30
2秒前
2秒前
2秒前
astronautadam发布了新的文献求助10
3秒前
Shrek1018发布了新的文献求助10
3秒前
3秒前
astronautadam发布了新的文献求助10
3秒前
3秒前
Hello应助Tumumu采纳,获得10
3秒前
4秒前
无花果应助Super Spine采纳,获得10
4秒前
4秒前
4秒前
astronautadam发布了新的文献求助10
5秒前
orixero应助水三寿采纳,获得10
6秒前
Romy发布了新的文献求助10
6秒前
左友铭完成签到 ,获得积分10
6秒前
7秒前
astronautadam发布了新的文献求助10
7秒前
astronautadam发布了新的文献求助10
7秒前
astronautadam发布了新的文献求助10
7秒前
7秒前
北梦发布了新的文献求助10
7秒前
科研通AI40应助lin采纳,获得10
8秒前
LCct发布了新的文献求助10
8秒前
Sulin发布了新的文献求助10
8秒前
tinysweet完成签到,获得积分10
9秒前
哒哒哒发布了新的文献求助10
9秒前
拓片发布了新的文献求助10
9秒前
酷炫小馒头完成签到,获得积分10
9秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470948
求助须知:如何正确求助?哪些是违规求助? 3063906
关于积分的说明 9086411
捐赠科研通 2754505
什么是DOI,文献DOI怎么找? 1511479
邀请新用户注册赠送积分活动 698420
科研通“疑难数据库(出版商)”最低求助积分说明 698330