Mitigating chain degradation of lithium-rich manganese-based cathode material by surface engineering

材料科学 降级(电信) 锂(药物) 阴极 表面工程 链条(单位) 化学工程 冶金 计算机科学 电气工程 医学 电信 物理 工程类 天文 内分泌学
作者
Xingpeng Cai,Shiyou Li,Junfei Zhou,Jiawen Zhang,Ningshuang Zhang,Xiaoling Cui
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:: 103624-103624
标识
DOI:10.1016/j.ensm.2024.103624
摘要

Due to offering joint cationic and anionic redox, lithium-rich manganese-based layered oxides (LMLOs) allow high energy density in lithium-ion batteries. However, the oxygen loss, electrode-electrolyte interface side reactions and the structural degradation have resulted in continuous performance decay, hindering the scale-up application of LMLOs. Here, Li1.3V0.94(BO3)2 (LVB) is uniformly coated on the Li1.2Mn0.54Co0.13Ni0.13O2 (LMNCO) surface by using a sol-gel method combined with a high-temperature calcination. By applying multiple characterizations including in-situ XRD, DEMS, HRTEM, AFM and electrochemical test, we prove that the LVB layer provides a physical barrier, which effectively inhibits the surface reactivity and blocks the chain degradation from the source, improves the reversibility of O2- redox and prevents the phase transition and structural degradation propagating from the surface to the bulk. Moreover, the kinetic investigations and calculations reveal that the LVB modification not only improves the electron conductivity by the strong bond of V-O and B-O to decrease the surface work function and increase the electron density near the Fermi energy level, but also provides expanded pathways with lower impedance to facilitate the Li+ transfer and diffusion. Impressively, the modified cathode exhibits the higher rate performance (151 mAh g-1 at 5C) and improved cycle stability under high cutoff voltage (217.7 mAh g-1 after 200 cycles at 0.2C in 2.0–4.8 V, 92.5% capacity retention; even in 2.0–5 V, 93.9% after 100 cycles). This work systematically investigates the inhibiting degradation mechanism and establishes the correlation between the intrinsic structure and surface engineering, and offers valuable insight into the development of high-performance LMLOs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助干净的烧鹅采纳,获得10
刚刚
1秒前
2秒前
2秒前
3秒前
3秒前
Orange应助老王采纳,获得10
4秒前
pursue发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
楚寅完成签到 ,获得积分10
7秒前
delta完成签到 ,获得积分10
7秒前
大模型应助cling采纳,获得10
7秒前
思源应助晓xiao采纳,获得10
8秒前
hushan53发布了新的文献求助10
8秒前
喜宝发布了新的文献求助10
8秒前
fyf完成签到,获得积分20
8秒前
Yr完成签到,获得积分10
9秒前
皮皮鹏发布了新的文献求助10
9秒前
10秒前
10秒前
可爱的函函应助阳光的鱼采纳,获得10
11秒前
11秒前
雪儿发布了新的文献求助10
12秒前
13秒前
13秒前
和谐板栗完成签到 ,获得积分10
13秒前
lihe198900完成签到 ,获得积分10
14秒前
搜集达人应助激昂的白凡采纳,获得10
14秒前
木林森幻关注了科研通微信公众号
14秒前
XX完成签到,获得积分10
14秒前
充电宝应助白榆采纳,获得10
14秒前
14秒前
ZHANG_Kun发布了新的文献求助10
15秒前
日月轮回完成签到,获得积分20
15秒前
皮皮鹏完成签到,获得积分20
15秒前
15秒前
Xenia发布了新的文献求助10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484