材料科学
降级(电信)
锰
锂(药物)
阴极
表面工程
链条(单位)
化学工程
冶金
计算机科学
电气工程
医学
电信
物理
工程类
天文
内分泌学
作者
Xingpeng Cai,Shiyou Li,Junfei Zhou,Jiawen Zhang,Ningshuang Zhang,Xiaoling Cui
标识
DOI:10.1016/j.ensm.2024.103624
摘要
Due to offering joint cationic and anionic redox, lithium-rich manganese-based layered oxides (LMLOs) allow high energy density in lithium-ion batteries. However, the oxygen loss, electrode-electrolyte interface side reactions and the structural degradation have resulted in continuous performance decay, hindering the scale-up application of LMLOs. Here, Li1.3V0.94(BO3)2 (LVB) is uniformly coated on the Li1.2Mn0.54Co0.13Ni0.13O2 (LMNCO) surface by using a sol-gel method combined with a high-temperature calcination. By applying multiple characterizations including in-situ XRD, DEMS, HRTEM, AFM and electrochemical test, we prove that the LVB layer provides a physical barrier, which effectively inhibits the surface reactivity and blocks the chain degradation from the source, improves the reversibility of O2- redox and prevents the phase transition and structural degradation propagating from the surface to the bulk. Moreover, the kinetic investigations and calculations reveal that the LVB modification not only improves the electron conductivity by the strong bond of V-O and B-O to decrease the surface work function and increase the electron density near the Fermi energy level, but also provides expanded pathways with lower impedance to facilitate the Li+ transfer and diffusion. Impressively, the modified cathode exhibits the higher rate performance (151 mAh g-1 at 5C) and improved cycle stability under high cutoff voltage (217.7 mAh g-1 after 200 cycles at 0.2C in 2.0–4.8 V, 92.5% capacity retention; even in 2.0–5 V, 93.9% after 100 cycles). This work systematically investigates the inhibiting degradation mechanism and establishes the correlation between the intrinsic structure and surface engineering, and offers valuable insight into the development of high-performance LMLOs.
科研通智能强力驱动
Strongly Powered by AbleSci AI