Tensorized and Compressed Multi-view Subspace Clustering via Structured Constraint

计算机科学 聚类分析 约束(计算机辅助设计) 子空间拓扑 机器学习 数据挖掘 冗余(工程) 局部一致性 理论计算机科学 离群值 特征学习 模式识别(心理学) 人工智能 约束满足问题 概率逻辑 数学 操作系统 几何学
作者
Wei Chang,Huimin Chen,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10434-10451 被引量:7
标识
DOI:10.1109/tpami.2024.3446537
摘要

Multi-view learning has raised more and more attention in recent years. However, traditional approaches only focus on the difference while ignoring the consistency among views. It may make some views, with the situation of data abnormality or noise, ineffective in the progress of view learning. Besides, the current datasets have become high-dimensional and large-scale gradually. Therefore, this paper proposes a novel multi-view compressed subspace learning method via low-rank tensor constraint, which incorporates the clustering progress and multi-view learning into a unified framework. First, for each view, we take the partial samples to build a small-size dictionary, which can reduce the effect of both redundancy information and computation cost greatly. Then, to find the consistency and difference among views, we impose a low-rank tensor constraint on these representations and further design an auto-weighted mechanism to learn the optimal representation. Last, due to the non-square of the learned representation, the bipartite graph has been introduced, and under the structured constraint, the clustering results can be obtained directly from this graph without any post-processing. Extensive experiments on synthetic and real-world benchmark datasets demonstrate the efficacy and efficiency of our method, especially for the views with noise or outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助sssssss采纳,获得10
1秒前
1秒前
姚龙完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
pluto应助稳重的秋天采纳,获得10
2秒前
3秒前
Yiran发布了新的文献求助10
4秒前
biequnyi完成签到,获得积分10
4秒前
李健的粉丝团团长应助Lmey采纳,获得10
5秒前
wayne完成签到 ,获得积分10
5秒前
木香发布了新的文献求助10
5秒前
一一发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
yyy0820完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
可可完成签到,获得积分10
10秒前
sys549应助yanni采纳,获得50
10秒前
清秀的小狗完成签到,获得积分10
11秒前
11111完成签到,获得积分20
11秒前
八万发布了新的文献求助10
11秒前
快乐的云关注了科研通微信公众号
11秒前
FashionBoy应助月月采纳,获得10
12秒前
12秒前
ShengzhangLiu完成签到,获得积分10
12秒前
科研通AI6.1应助lkkkkkk采纳,获得30
12秒前
12秒前
13秒前
happyAlice发布了新的文献求助10
13秒前
14秒前
发10篇SCI发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207