Tensorized and Compressed Multi-view Subspace Clustering via Structured Constraint

计算机科学 聚类分析 约束(计算机辅助设计) 子空间拓扑 机器学习 数据挖掘 冗余(工程) 局部一致性 理论计算机科学 离群值 特征学习 模式识别(心理学) 人工智能 约束满足问题 概率逻辑 数学 操作系统 几何学
作者
Wei Chang,Huimin Chen,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10434-10451 被引量:7
标识
DOI:10.1109/tpami.2024.3446537
摘要

Multi-view learning has raised more and more attention in recent years. However, traditional approaches only focus on the difference while ignoring the consistency among views. It may make some views, with the situation of data abnormality or noise, ineffective in the progress of view learning. Besides, the current datasets have become high-dimensional and large-scale gradually. Therefore, this paper proposes a novel multi-view compressed subspace learning method via low-rank tensor constraint, which incorporates the clustering progress and multi-view learning into a unified framework. First, for each view, we take the partial samples to build a small-size dictionary, which can reduce the effect of both redundancy information and computation cost greatly. Then, to find the consistency and difference among views, we impose a low-rank tensor constraint on these representations and further design an auto-weighted mechanism to learn the optimal representation. Last, due to the non-square of the learned representation, the bipartite graph has been introduced, and under the structured constraint, the clustering results can be obtained directly from this graph without any post-processing. Extensive experiments on synthetic and real-world benchmark datasets demonstrate the efficacy and efficiency of our method, especially for the views with noise or outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
rafaam发布了新的文献求助10
2秒前
cxw完成签到,获得积分10
2秒前
NexusExplorer应助河神采纳,获得10
2秒前
Mic应助morena采纳,获得10
2秒前
2秒前
3秒前
謃河鷺起完成签到,获得积分10
3秒前
shinble发布了新的文献求助10
3秒前
4秒前
usdivff发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
夏冰雹完成签到 ,获得积分10
5秒前
大模型应助LL爱读书采纳,获得10
5秒前
Lucas应助pero采纳,获得10
5秒前
6秒前
吮指原味鸡完成签到,获得积分20
6秒前
6秒前
violet发布了新的文献求助10
7秒前
杨涵发布了新的文献求助10
7秒前
7秒前
WUHUIWEN完成签到,获得积分10
7秒前
慕青应助香蕉傲菡采纳,获得30
8秒前
皮咻完成签到,获得积分10
8秒前
和光同尘完成签到,获得积分10
8秒前
9秒前
慕青应助zw采纳,获得10
10秒前
hh发布了新的文献求助10
10秒前
大圈圈发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
方圆发布了新的文献求助30
12秒前
12秒前
13秒前
科研通AI6应助淡淡姿采纳,获得10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715