MOT-DETR: 3D single shot detection and tracking with transformers to build 3D representations for agro-food robots

变压器 跟踪(教育) 机器人 人工智能 计算机科学 单发 计算机视觉 工程类 电气工程 物理 心理学 教育学 光学 电压
作者
David Rapado-Rincón,Henk Nap,Katarína Smoleňová,E.J. van Henten,Gert Kootstra
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:225: 109275-109275
标识
DOI:10.1016/j.compag.2024.109275
摘要

In the current demand for automation in the agro-food industry, accurately detecting and localizing relevant objects in 3D is essential for successful robotic operations. However, this is a challenge due the presence of occlusions. Multi-view perception approaches allow robots to overcome occlusions, but a tracking component is needed to associate the objects detected by the robot over multiple viewpoints. Most multi-object tracking (MOT) algorithms are designed for high frame rate sequences and struggle with the occlusions generated by robots' motions and 3D environments. In this paper, we introduce MOT-DETR, a novel approach to detect and track objects in 3D over time using a combination of convolutional networks and transformers. Our method processes 2D and 3D data, and employs a transformer architecture to perform data fusion. We show that MOT-DETR outperforms state-of-the-art multi-object tracking methods. Furthermore, we prove that MOT-DETR can leverage 3D data to deal with long-term occlusions and large frame-to-frame distances better than state-of-the-art methods. Finally, we show how our method is resilient to camera pose noise that can affect the accuracy of point clouds. The implementation of MOT-DETR can be found here: https://github.com/drapado/mot-detr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的石头完成签到,获得积分10
刚刚
坚定的乐天完成签到,获得积分10
1秒前
1秒前
北粥发布了新的文献求助10
2秒前
海猫食堂发布了新的文献求助10
3秒前
ccccc发布了新的文献求助10
4秒前
4秒前
5秒前
上官翠花完成签到,获得积分10
5秒前
郜先生完成签到,获得积分10
6秒前
6秒前
不敢自称科研人完成签到,获得积分10
6秒前
lifesmile应助北粥采纳,获得10
8秒前
香蕉觅云应助北粥采纳,获得20
8秒前
科研通AI5应助韦行天采纳,获得10
9秒前
碧蓝的马里奥关注了科研通微信公众号
9秒前
荔枝发布了新的文献求助10
9秒前
10秒前
11秒前
苹果笑寒完成签到,获得积分10
11秒前
坚强盾山完成签到,获得积分10
11秒前
max完成签到 ,获得积分10
11秒前
Uranus发布了新的文献求助10
11秒前
12秒前
小马甲应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
杳鸢应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763195
求助须知:如何正确求助?哪些是违规求助? 3307735
关于积分的说明 10141217
捐赠科研通 3022763
什么是DOI,文献DOI怎么找? 1659311
邀请新用户注册赠送积分活动 792510
科研通“疑难数据库(出版商)”最低求助积分说明 754982