TrinitySLAM: On-board Real-time Event-image Fusion SLAM System for Drones

无人机 计算机科学 计算机视觉 人工智能 事件(粒子物理) 船上 图像(数学) 融合 实时计算 语言学 哲学 物理 遗传学 量子力学 工程类 生物 航空航天工程
作者
Xinjun Cai,Jingao Xu,Kuntian Deng,Hongbo Lan,Yue Wu,Xiangwen Zhuge,Zheng Yang
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
标识
DOI:10.1145/3696420
摘要

Drones have witnessed extensive popularity among diverse smart applications, and visual SLAM technology is commonly used to estimate 6-DoF pose for the drone flight control system. However, traditional image-based SLAM cannot ensure the flight safety of drones, especially in challenging environments such as high-speed flight and high dynamic range scenarios. Event camera, a new vision sensor, holds the potential to enable drones to overcome the above challenging scenarios if fused into the image-based SLAM. Unfortunately, the computational demands of event-image fusion SLAM have grown manifold compared to image-based SLAM. Existing research on visual SLAM acceleration cannot achieve real-time operation of event-image fusion SLAM on on-board computing platforms for drones. To fill this gap, we present TrinitySLAM , a high accuracy, real-time, low energy consumption event-image fusion SLAM acceleration framework utilizing Xilinx Zynq, an on-board heterogeneous computing platform. The key innovations of TrinitySLAM include a fine-grained computation allocation strategy, several novel hardware-software co-acceleration designs, and an efficient data exchange mechanism. We fully implement TrinitySLAM on the latest Zynq UltraScale+ platform and evaluate its performance under one self-made drone dataset and four official datasets covering various scenarios. Comprehensive experiments show TrinitySLAM improves the pose estimation accuracy by 28% with half end-to-end latency and 1.2 × energy consumption reduction, compared to the most comparable SOTA heterogeneous computing platform acceleration baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助顺心的毛巾采纳,获得10
1秒前
1秒前
彭于晏应助aa采纳,获得10
2秒前
2秒前
3秒前
4秒前
小鹿发布了新的文献求助30
4秒前
云舒发布了新的文献求助10
4秒前
5秒前
6秒前
曹帅发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
万里发布了新的文献求助10
7秒前
科目三应助坚强的严青采纳,获得10
7秒前
mmluo完成签到,获得积分20
8秒前
8秒前
9秒前
id完成签到,获得积分10
9秒前
10秒前
toxin37完成签到,获得积分10
10秒前
11秒前
情红锐发布了新的文献求助10
11秒前
赘婿应助一十六采纳,获得80
11秒前
Junzhou完成签到,获得积分10
12秒前
maozcmt完成签到,获得积分10
13秒前
农大彭于晏完成签到,获得积分10
13秒前
敏感初露发布了新的文献求助10
13秒前
14秒前
Lucas应助云舒采纳,获得10
14秒前
Orange应助doomwise采纳,获得10
14秒前
14秒前
14秒前
慕青应助ohhhh采纳,获得10
15秒前
15秒前
科研通AI2S应助Astro采纳,获得10
16秒前
16秒前
17秒前
也一样发布了新的文献求助20
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248186
求助须知:如何正确求助?哪些是违规求助? 2891481
关于积分的说明 8267794
捐赠科研通 2559607
什么是DOI,文献DOI怎么找? 1388395
科研通“疑难数据库(出版商)”最低求助积分说明 650743
邀请新用户注册赠送积分活动 627698