凝结
重组DNA
化学
止血
生化工程
生物技术
风险分析(工程)
生物
医学
生物化学
工程类
外科
基因
精神科
作者
Linling Yu,Dongmei Yang,M.C. Chu,Yan Sun
标识
DOI:10.1016/j.chroma.2024.464662
摘要
Hemostasis is a complex process for the cessation of bleeding from an injured blood vessel, involving the interplay of 12 coagulation factors in the coagulation cascade with activated blood platelets and the vessel wall. Hence, the coagulation factors are important to control hemorrhage. However, the low abundance of many coagulation factors in human plasma proteins limited their production in therapeutic drugs and their clinical applications. With the development of modern biotechnology, commercially manufactured recombinant coagulation factors became available as hemostatic therapeutics, emerging a huge potential in pharmaceutical manufacturing market. Unlike antibodies, whose standard operation unit or platform purification processes in the industrial-scale downstream processing has been well-established, the complexity in post-translational modification and differences in structures of the coagulation factors posed specific challenges with respect to the downstream processing, which have long been limiting their industrial-scale production. This review presents a comprehensive overview of the technological development of commercially manufactured recombinant coagulation factors, with emphasis on their advances and challenges in the separation and purification processes. Firstly, the licensed products of the plasma derived and recombinant coagulation factors are summarized. Then, typical recombinant coagulation factors, i.e. factors VII, VIII and IX, are introduced with detailed discussion on their preparative separation procedures for both the licensed products of industrial-scale and the experimental cases of laboratory-scale. Finally, perspectives and challenges in the future development of the purification technology of recombinant coagulation factors are highlighted to provide new insight into the design of cost-effective purification processes of recombinant coagulation factors.
科研通智能强力驱动
Strongly Powered by AbleSci AI