已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Information-aware Multi-view Outlier Detection

异常检测 计算机科学 离群值 数据挖掘 数据科学 人工智能
作者
Jinrong Lai,Tong Wang,Chuan Chen,Zibin Zheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (4): 1-16
标识
DOI:10.1145/3638354
摘要

With the development of multi-view learning, multi-view outlier detection has received increasing attention in recent years. However, the current research still faces two challenges: (1) The current research lacks theoretical analysis tools for multi-view outliers. (2) Most current multi-view outlier detection algorithms are based on shallow structural assumptions of the data, such as cluster assumptions and subspace assumptions, thus they are not suitable for more complex data distributions. In addressing these two issues, this article proposes three occurrence mechanisms of multi-view outlier, which serve as foundational theoretical analysis tools for multi-view outliers. Utilizing proposed mechanisms, we analyze the impact of multi-view outliers and the information structure of multi-view data and validate our findings through experiments. Finally, we propose a novel algorithm referred to as Information-Aware Multi-View Outlier Detection (IAMOD). In contrast to other methods, IAMOD focuses on the information structure of multi-view data without relying on shallow structural assumptions. By learning a compact representation of the sample that is semantically rich and non-redundant, IAMOD can accurately identify multi-view outliers by comparing the consistency of the representations’ neighbors and views. Extensive experimental results demonstrate that our approach outperforms several state-of-the-art multi-view outlier detection methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jch发布了新的文献求助10
1秒前
雪白阑悦发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
kdjc完成签到 ,获得积分10
5秒前
AmosWong发布了新的文献求助10
5秒前
锦鲤发布了新的文献求助10
5秒前
烟花应助lijingyi采纳,获得10
6秒前
豌豆完成签到 ,获得积分10
7秒前
Catching发布了新的文献求助10
7秒前
hvgjgfjhgjh发布了新的文献求助10
8秒前
leaf完成签到 ,获得积分10
9秒前
赫如冰完成签到 ,获得积分10
9秒前
隐形曼青应助catherine采纳,获得10
9秒前
三点前我必睡完成签到 ,获得积分10
12秒前
15秒前
tejing1158完成签到,获得积分10
15秒前
22秒前
英姑应助锦鲤采纳,获得10
23秒前
情怀应助张贵虎采纳,获得10
24秒前
24秒前
光亮静槐完成签到 ,获得积分10
27秒前
远山浅发布了新的文献求助10
29秒前
31秒前
风趣的梦露完成签到 ,获得积分10
32秒前
你求我一下完成签到,获得积分10
32秒前
lijingyi发布了新的文献求助10
37秒前
NexusExplorer应助山君采纳,获得10
39秒前
40秒前
42秒前
张一二二二完成签到,获得积分10
42秒前
打打应助ST采纳,获得10
43秒前
张贵虎发布了新的文献求助10
44秒前
清爽的大树完成签到,获得积分10
46秒前
lijingyi完成签到,获得积分10
46秒前
可恶啊发布了新的文献求助10
47秒前
lj完成签到,获得积分20
48秒前
程青青完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568069
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701569
捐赠科研通 4594423
什么是DOI,文献DOI怎么找? 2520924
邀请新用户注册赠送积分活动 1492831
关于科研通互助平台的介绍 1463687