亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
零_发布了新的文献求助10
3秒前
康康舞曲完成签到 ,获得积分10
5秒前
秋作完成签到,获得积分10
8秒前
8秒前
米其林发布了新的文献求助30
10秒前
12秒前
KON完成签到,获得积分10
14秒前
17秒前
黎明完成签到,获得积分10
21秒前
零_完成签到,获得积分10
22秒前
负责代珊完成签到,获得积分10
23秒前
SciGPT应助123采纳,获得10
23秒前
23秒前
黎明发布了新的文献求助10
25秒前
研友_VZG7GZ应助怦然心动采纳,获得10
26秒前
领导范儿应助王老裂采纳,获得80
27秒前
29秒前
brwen完成签到,获得积分10
32秒前
dax大雄完成签到 ,获得积分10
36秒前
39秒前
41秒前
42秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得30
43秒前
共享精神应助科研通管家采纳,获得10
43秒前
田様应助科研通管家采纳,获得10
43秒前
ding应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
Hello应助科研通管家采纳,获得10
43秒前
ZZZ完成签到,获得积分10
46秒前
羊羊羊发布了新的文献求助10
46秒前
歪歪吸发布了新的文献求助10
46秒前
47秒前
xiaokun发布了新的文献求助10
47秒前
123发布了新的文献求助10
47秒前
王老裂发布了新的文献求助80
52秒前
歪歪吸完成签到,获得积分10
53秒前
北一君完成签到,获得积分10
53秒前
何靖馥琳完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147