Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oon完成签到,获得积分10
刚刚
1秒前
1秒前
小熊完成签到,获得积分10
1秒前
1秒前
大模型应助喜悦的如娆采纳,获得10
2秒前
pluto应助yyy采纳,获得10
2秒前
晨丶完成签到,获得积分10
2秒前
纯真万言完成签到,获得积分10
3秒前
奕苼完成签到 ,获得积分10
3秒前
Owen应助甜蜜弱采纳,获得10
3秒前
susan完成签到,获得积分10
4秒前
Mok发布了新的文献求助10
6秒前
一棵树完成签到,获得积分10
7秒前
8秒前
10秒前
健忘可愁应助疯狂的聋五采纳,获得20
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
xzy998应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
可爱草丛应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
xzy998应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
Cleo应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841