Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吧唧发布了新的文献求助10
1秒前
传奇3应助强健的匕采纳,获得10
1秒前
深情安青应助对映体采纳,获得10
1秒前
2秒前
儒雅的蜜粉完成签到,获得积分10
2秒前
zz发布了新的文献求助10
2秒前
2秒前
3秒前
陈丞澄发布了新的文献求助10
3秒前
蓦然发布了新的文献求助10
6秒前
6秒前
YCG完成签到 ,获得积分10
7秒前
竹筏过海应助淡然天问采纳,获得30
7秒前
浮游应助淡然天问采纳,获得10
7秒前
领导范儿应助柔弱的冬天采纳,获得30
8秒前
落后翠柏发布了新的文献求助10
9秒前
不安的成协完成签到,获得积分10
10秒前
10秒前
11秒前
长情听南发布了新的文献求助10
12秒前
锦慜发布了新的文献求助10
12秒前
顾矜应助蓦然采纳,获得10
13秒前
可爱的函函应助panda采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
李昕123发布了新的文献求助10
14秒前
14秒前
吧唧完成签到,获得积分10
15秒前
123456完成签到,获得积分10
16秒前
大模型应助wjy321采纳,获得10
16秒前
云漫山发布了新的文献求助10
16秒前
Ruby应助jsss采纳,获得10
17秒前
17秒前
18秒前
wise111发布了新的文献求助30
18秒前
尊敬的小凡完成签到,获得积分10
18秒前
xbx1991发布了新的文献求助30
18秒前
充电宝应助阿良采纳,获得10
20秒前
自信大白菜真实的钥匙完成签到,获得积分10
20秒前
wyh应助活泼溪流采纳,获得30
20秒前
李昕123完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704