亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘振坤完成签到,获得积分10
3秒前
Lucas应助CMQ2021102261采纳,获得10
6秒前
6秒前
英俊的铭应助jj采纳,获得10
11秒前
11秒前
领导范儿应助Eden采纳,获得10
15秒前
16秒前
远远发布了新的文献求助10
17秒前
CC发布了新的文献求助10
21秒前
jj发布了新的文献求助10
22秒前
远远完成签到,获得积分10
24秒前
24秒前
32秒前
CodeCraft应助认真的紫寒采纳,获得10
33秒前
绿色植物发布了新的文献求助10
39秒前
闪闪发布了新的文献求助10
43秒前
44秒前
zsy发布了新的文献求助10
44秒前
level完成签到 ,获得积分10
49秒前
复杂的可乐完成签到 ,获得积分10
51秒前
51秒前
Eden发布了新的文献求助10
51秒前
浮华发布了新的文献求助10
51秒前
HYH完成签到,获得积分20
52秒前
认真的紫寒完成签到,获得积分10
55秒前
56秒前
浮华完成签到,获得积分10
1分钟前
Ava应助zsy采纳,获得20
1分钟前
Enckson完成签到,获得积分10
1分钟前
yhgz完成签到,获得积分10
1分钟前
mama完成签到 ,获得积分10
1分钟前
无花果应助韩国辉采纳,获得10
1分钟前
zsy完成签到,获得积分20
1分钟前
李健应助lyingiu采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得30
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622185
求助须知:如何正确求助?哪些是违规求助? 4707110
关于积分的说明 14938651
捐赠科研通 4768595
什么是DOI,文献DOI怎么找? 2552156
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005