已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunhhhh完成签到 ,获得积分10
1秒前
慕青应助微笑的傲旋采纳,获得10
2秒前
木风2023完成签到,获得积分10
2秒前
3秒前
狂野雅彤发布了新的文献求助10
4秒前
真不错完成签到,获得积分10
7秒前
思源应助DD采纳,获得10
9秒前
10秒前
10秒前
天天快乐应助好天气采纳,获得10
13秒前
17秒前
CipherSage应助科研通管家采纳,获得10
18秒前
无极微光应助科研通管家采纳,获得20
18秒前
归尘应助科研通管家采纳,获得30
18秒前
归尘应助科研通管家采纳,获得30
18秒前
归尘应助科研通管家采纳,获得30
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
xxfsx应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
18秒前
归尘应助科研通管家采纳,获得30
18秒前
19秒前
淳于惜雪完成签到 ,获得积分10
19秒前
19秒前
达布妞发布了新的文献求助10
20秒前
-17完成签到 ,获得积分10
20秒前
21秒前
小马甲应助直率孤风采纳,获得10
22秒前
领导范儿应助Rzozsye采纳,获得10
24秒前
chen完成签到,获得积分10
25秒前
ifly发布了新的文献求助10
25秒前
26秒前
CodeCraft应助agf采纳,获得10
27秒前
领导范儿应助ZBQ采纳,获得10
27秒前
充电宝应助火鸡味锅巴采纳,获得10
29秒前
April完成签到,获得积分10
29秒前
君兰发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279