Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助冷静短靴采纳,获得10
刚刚
刚刚
li完成签到,获得积分10
刚刚
鲸鱼发布了新的文献求助10
1秒前
番茄发布了新的文献求助10
1秒前
芒刺发布了新的文献求助10
1秒前
彭于晏应助7sa3o采纳,获得10
1秒前
yin发布了新的文献求助10
2秒前
BallQ完成签到,获得积分10
2秒前
wangwen完成签到,获得积分10
2秒前
李爱国应助米修采纳,获得10
2秒前
小年发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
liyu发布了新的文献求助10
4秒前
NexusExplorer应助义气的巨人采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
摩卡发布了新的文献求助10
5秒前
哗啦啦啦完成签到,获得积分10
6秒前
Lucas应助淡淡朝阳采纳,获得20
6秒前
张玉建完成签到,获得积分10
6秒前
7秒前
xinyueyue完成签到,获得积分10
7秒前
7秒前
Gotyababy发布了新的文献求助10
7秒前
FashionBoy应助蓝胖子采纳,获得10
7秒前
8秒前
JRRskynet发布了新的文献求助10
8秒前
8秒前
kndr10完成签到,获得积分20
9秒前
天天快乐应助明天不打球采纳,获得10
9秒前
人间大清醒完成签到,获得积分10
9秒前
bkagyin应助和谐竺采纳,获得10
9秒前
yujie发布了新的文献求助10
9秒前
Chow发布了新的文献求助10
9秒前
Robin完成签到,获得积分20
9秒前
orixero应助雪莉酒采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403