Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慢慢发布了新的文献求助10
1秒前
2秒前
善学以致用应助ccc采纳,获得10
2秒前
阳阳完成签到,获得积分10
2秒前
xl完成签到 ,获得积分10
3秒前
求知的周发布了新的文献求助30
4秒前
meibeiwu关注了科研通微信公众号
4秒前
HZH发布了新的文献求助10
5秒前
小蘑菇完成签到 ,获得积分10
5秒前
nb小子发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
David发布了新的文献求助10
7秒前
团团完成签到,获得积分10
7秒前
zwx发布了新的文献求助10
8秒前
怡然的寻桃关注了科研通微信公众号
9秒前
今天炒鱿鱼完成签到,获得积分20
9秒前
电池小能手完成签到,获得积分10
10秒前
Bubble_bei完成签到 ,获得积分10
11秒前
董恋风完成签到,获得积分10
12秒前
大模型应助一一采纳,获得10
13秒前
13秒前
14秒前
海鑫王完成签到,获得积分10
15秒前
mao关注了科研通微信公众号
15秒前
Attendre完成签到 ,获得积分10
15秒前
爆米花应助Faith采纳,获得10
16秒前
傲娇的月亮完成签到,获得积分10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
田様应助慢慢采纳,获得10
17秒前
17秒前
劼大大完成签到,获得积分10
17秒前
执着的草丛完成签到,获得积分10
17秒前
17秒前
wanci应助zwx采纳,获得10
18秒前
zwx发布了新的文献求助20
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049