Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ll发布了新的文献求助10
2秒前
2秒前
xiaoxiao完成签到,获得积分20
3秒前
bean完成签到 ,获得积分10
4秒前
kingwill发布了新的文献求助30
5秒前
5秒前
段誉发布了新的文献求助10
6秒前
时尚的大开完成签到 ,获得积分10
6秒前
黎明森发布了新的文献求助10
6秒前
Youzi完成签到,获得积分10
7秒前
李松林完成签到 ,获得积分10
7秒前
8秒前
CipherSage应助发生了什么树采纳,获得10
9秒前
在水一方应助KT采纳,获得10
9秒前
10秒前
seven发布了新的文献求助10
10秒前
DQ1175发布了新的文献求助10
11秒前
赘婿应助风中亦玉采纳,获得10
11秒前
田様应助shaqima采纳,获得30
12秒前
ssk完成签到,获得积分10
12秒前
山药汤发布了新的文献求助10
17秒前
你嵙这个期刊没买应助cbz采纳,获得10
19秒前
所所应助DQ1175采纳,获得10
19秒前
平淡的鹰完成签到,获得积分10
19秒前
21秒前
21秒前
23秒前
绯的绯色完成签到 ,获得积分10
23秒前
24秒前
结实幼枫发布了新的文献求助10
25秒前
25秒前
热心雪一完成签到,获得积分10
26秒前
tjykdxzx发布了新的文献求助10
26秒前
阔达的道之完成签到,获得积分10
26秒前
GiantC0c完成签到,获得积分10
27秒前
爆米花应助不可能吃香菜采纳,获得10
27秒前
今后应助清阙采纳,获得10
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567276
求助须知:如何正确求助?哪些是违规求助? 4651931
关于积分的说明 14698461
捐赠科研通 4593813
什么是DOI,文献DOI怎么找? 2520457
邀请新用户注册赠送积分活动 1492624
关于科研通互助平台的介绍 1463607