Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11发布了新的文献求助10
刚刚
深情平文发布了新的文献求助30
1秒前
雷雷完成签到,获得积分10
1秒前
JingjingYao完成签到,获得积分10
1秒前
虚心的海蓝完成签到,获得积分10
1秒前
刘洁铮关注了科研通微信公众号
1秒前
1秒前
baisefengche发布了新的文献求助10
1秒前
Hiker发布了新的文献求助10
2秒前
梁钋瑞发布了新的文献求助10
2秒前
2秒前
YINGYAN应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小蘑菇应助酷酷乐瑶采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Owen应助嘟噜采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
李爱国应助yu采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
esfrg完成签到,获得积分10
3秒前
小二郎应助EIS采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
ctttt发布了新的文献求助10
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
干净寻冬应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
fanhlin发布了新的文献求助30
4秒前
wy.he应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398