Machine-learning-based integrated photonic device optimization with data-driven eigenmode expansion

光子学 本征模展开 正常模式 计算机科学 模式(计算机接口) 集成光学 电子工程 声学 材料科学 光电子学 物理 工程类 振动 人机交互
作者
Mehmet Can Oktay,Aytug Aydogan,Emir Salih Magden
标识
DOI:10.1117/12.3002785
摘要

As guided-wave circuits continue to increase in complexity, designing efficient and compact on-chip building blocks for these circuits continues to be a crucial research and development objective for many photonic platforms. Despite this critical requirement, the best-performing devices still require computationally intensive simulations that can take up to days, with no guaranteed results. To address this challenge, we introduce a novel, data-driven, and extremely rapid eigenmode expansion (EME) method for designing compact and efficient integrated photonic devices. In contrast to typical EME, our method models a given waveguide geometry using a pre-calculated dataset of optical scattering matrices and effective indices, therefore easily parallelized to computational accelerators like GPUs. This results in individual device simulation times of 10s of milliseconds, representing a speedup of more than 1000x over traditional methods. We then couple this approach with nonlinear iterative optimization methods and demonstrate the design and optimization of highly efficient nanophotonic devices, including tapers, 3dB splitters, and waveguide crossings within ultra-compact footprints. For all three categories of devices, we verify the response of the final geometry using 3DFDTD simulations and demonstrate state-of-the-art metrics, including below 0.05dB of insertion loss, near-perfect mode matching to the desired output, and broadband operation capabilities of over 100nm. Our unique combination of efficient and physically accurate device simulation methods, together with nonlinear optimization, enables the design of high-performance and ultra-compact photonic building blocks. These capabilities present avenues for developing more complex and previously elusive optical functionalities with unprecedented computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
稳重的友灵完成签到,获得积分10
刚刚
hys发布了新的文献求助10
刚刚
JamesPei应助lizhi采纳,获得10
1秒前
顾矜应助wu采纳,获得10
2秒前
Ava应助胖达采纳,获得10
2秒前
3秒前
万能图书馆应助story采纳,获得10
3秒前
4秒前
5秒前
RR发布了新的文献求助10
6秒前
科研小白发布了新的文献求助10
6秒前
洁净晓夏完成签到 ,获得积分10
6秒前
JamesPei应助姚盈盈采纳,获得10
7秒前
7秒前
大个应助嘎嘎采纳,获得30
7秒前
8秒前
自信半山发布了新的文献求助10
8秒前
可爱的函函应助九幺采纳,获得10
8秒前
科研通AI6应助ru采纳,获得30
8秒前
9秒前
谷雨秋发布了新的文献求助10
9秒前
希望天下0贩的0应助li采纳,获得10
11秒前
qianye完成签到,获得积分10
11秒前
hgzb发布了新的文献求助10
12秒前
12秒前
12秒前
liushu发布了新的文献求助10
13秒前
bgt完成签到 ,获得积分10
13秒前
古丹娜发布了新的文献求助10
13秒前
慕青应助hys采纳,获得10
13秒前
和和和完成签到,获得积分10
14秒前
传奇3应助蓝天采纳,获得10
15秒前
story发布了新的文献求助10
17秒前
reny发布了新的文献求助10
17秒前
寒冷的奇异果完成签到,获得积分10
19秒前
NexusExplorer应助Jmuran采纳,获得10
19秒前
自信半山完成签到,获得积分10
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354