Predicting determinants influencing user satisfaction with mental health app: An explainable machine learning approach based on unstructured data

计算机科学 机器学习 非结构化数据 心理健康 用户满意度 人工智能 人机交互 数据挖掘 大数据 心理学 精神科
作者
Adjei Peter Darko,Collins Opoku Antwi,Kingsley Adjei,Baojing Zhang,Jun Ren
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123647-123647 被引量:1
标识
DOI:10.1016/j.eswa.2024.123647
摘要

In the contemporary digital landscape, the rising concern for mental health has sparked a surge in the use of mental health apps (MHAs) as accessible tools for addressing psychological well-being. Maintaining a high level of user satisfaction (USAT) is important for MHAs in the highly competitive app market. Leveraging BERT (Bidirectional Encoder Representations from Transformers), a state-of-the-art deep learning (DL) model, we perform topic modeling and sentiment analysis on 17,717 user online reviews. Specifically, we employ the BERTopic model to identify the determinants of USAT with MHAs. Utilizing a BERT-base-multilingual-uncase-sentiment model, we perform sentiment analysis to distinguish determinants that elicit satisfaction from those causing dissatisfaction. Also, this study tests and compares six machine learning (ML) algorithms to predict the influence of determinants on USAT with MHAs. The Light Gradient Boosting Machine (LightGBM) emerges as the top performer, showcasing its efficacy in predicting USAT determinants. By using SHAP (Shapley Additive exPlanations), an explainable ML model with cross-validation, we visualize the results of the LightGBM. The SHAP values show that the five most influential determinants of USAT with MHAs include soothing audio experience, smoking cessation support, payment and subscription management, tracking progress and mindful meditation. This study facilitates a deeper understanding of user experiences through the identification and prediction of determinants of USAT with MHAs. Understanding these factors and their interplay is essential for developers, clinicians, and stakeholders who aim to enhance MHAs' services and ultimately improve the well-being of users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Libgenxxxx完成签到,获得积分10
刚刚
刚刚
热情的元芹完成签到,获得积分10
刚刚
平淡惋清完成签到,获得积分10
刚刚
Lily发布了新的文献求助10
1秒前
1秒前
lily完成签到 ,获得积分10
2秒前
Yuhui完成签到 ,获得积分10
2秒前
funny发布了新的文献求助10
2秒前
alick完成签到,获得积分10
2秒前
krislang完成签到,获得积分10
2秒前
糖糖糖完成签到,获得积分10
3秒前
落寞丹萱完成签到,获得积分10
3秒前
幻月完成签到,获得积分10
3秒前
4秒前
jason发布了新的文献求助10
4秒前
fuxr完成签到,获得积分10
4秒前
救救孩子救救孩子完成签到,获得积分10
5秒前
6秒前
小马甲应助无奈的萝采纳,获得10
6秒前
雪白元蝶完成签到,获得积分10
6秒前
BB鸟完成签到 ,获得积分10
6秒前
蔡秋景完成签到,获得积分10
6秒前
大个应助王金娥采纳,获得10
6秒前
7秒前
俭朴的忆曼完成签到,获得积分10
7秒前
蔡秋景发布了新的文献求助10
8秒前
折花浅笑完成签到,获得积分10
8秒前
虎咪咪完成签到,获得积分10
9秒前
enli发布了新的文献求助10
10秒前
10秒前
10秒前
FeLaN发布了新的文献求助20
11秒前
烟花应助Calvin采纳,获得10
11秒前
清浅溪完成签到 ,获得积分10
11秒前
透明人完成签到,获得积分10
11秒前
11秒前
11秒前
张诗雯完成签到 ,获得积分10
12秒前
cloverdown完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257518
求助须知:如何正确求助?哪些是违规求助? 2899479
关于积分的说明 8305791
捐赠科研通 2568680
什么是DOI,文献DOI怎么找? 1395251
科研通“疑难数据库(出版商)”最低求助积分说明 652969
邀请新用户注册赠送积分活动 630767