跳跃式监视
计算机科学
最小边界框
回归
交叉口(航空)
编码(集合论)
样品(材料)
回归分析
探测器
领域(数学)
人工智能
目标检测
统计
模式识别(心理学)
机器学习
数学
工程类
图像(数学)
航空航天工程
集合(抽象数据类型)
化学
程序设计语言
纯数学
电信
色谱法
作者
H.Y. Zhang,Shuaijie Zhang
出处
期刊:Cornell University - arXiv
日期:2024-01-01
被引量:14
标识
DOI:10.48550/arxiv.2401.10525
摘要
Bounding box regression plays a crucial role in the field of object detection, and the positioning accuracy of object detection largely depends on the loss function of bounding box regression. Existing researchs improve regression performance by utilizing the geometric relationship between bounding boxes, while ignoring the impact of difficult and easy sample distribution on bounding box regression. In this article, we analyzed the impact of difficult and easy sample distribution on regression results, and then proposed Focaler-IoU, which can improve detector performance in different detection tasks by focusing on different regression samples. Finally, comparative experiments were conducted using existing advanced detectors and regression methods for different detection tasks, and the detection performance was further improved by using the method proposed in this paper.Code is available at \url{https://github.com/malagoutou/Focaler-IoU}.
科研通智能强力驱动
Strongly Powered by AbleSci AI