MLDSPP: Bacterial Promoter Prediction Tool Using DNA Structural Properties with Machine Learning and Explainable AI

可解释性 机器学习 人工智能 发起人 计算生物学 计算机科学 基因组 基因组学 细菌基因组大小 基因 生物 遗传学 基因表达
作者
Subhojit Paul,Kaushika Olymon,Gustavo Sganzerla Martinez,Sharmilee Sarkar,Venkata Rajesh Yella,Aditya Kumar
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2705-2719 被引量:9
标识
DOI:10.1021/acs.jcim.3c02017
摘要

Bacterial promoters play a crucial role in gene expression by serving as docking sites for the transcription initiation machinery. However, accurately identifying promoter regions in bacterial genomes remains a challenge due to their diverse architecture and variations. In this study, we propose MLDSPP (Machine Learning and Duplex Stability based Promoter prediction in Prokaryotes), a machine learning-based promoter prediction tool, to comprehensively screen bacterial promoter regions in 12 diverse genomes. We leveraged biologically relevant and informative DNA structural properties, such as DNA duplex stability and base stacking, and state-of-the-art machine learning (ML) strategies to gain insights into promoter characteristics. We evaluated several machine learning models, including Support Vector Machines, Random Forests, and XGBoost, and assessed their performance using accuracy, precision, recall, specificity, F1 score, and MCC metrics. Our findings reveal that XGBoost outperformed other models and current state-of-the-art promoter prediction tools, namely Sigma70pred and iPromoter2L, achieving F1-scores >95% in most systems. Significantly, the use of one-hot encoding for representing nucleotide sequences complements these structural features, enhancing our XGBoost model's predictive capabilities. To address the challenge of model interpretability, we incorporated explainable AI techniques using Shapley values. This enhancement allows for a better understanding and interpretation of the predictions of our model. In conclusion, our study presents MLDSPP as a novel, generic tool for predicting promoter regions in bacteria, utilizing original downstream sequences as nonpromoter controls. This tool has the potential to significantly advance the field of bacterial genomics and contribute to our understanding of gene regulation in diverse bacterial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
卜雪旋完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
浮游应助舒心的雪莲采纳,获得10
5秒前
6秒前
6秒前
传奇3应助你好采纳,获得10
7秒前
李小心完成签到,获得积分10
7秒前
7秒前
7秒前
火山蜗牛发布了新的文献求助10
7秒前
xiao茗发布了新的文献求助10
8秒前
changmxiao发布了新的文献求助10
10秒前
11秒前
啦啦啦发布了新的文献求助10
13秒前
julien完成签到,获得积分10
13秒前
14秒前
17秒前
wyw发布了新的文献求助10
18秒前
坦率芷天完成签到,获得积分10
18秒前
端庄的天空关注了科研通微信公众号
19秒前
飞天猫发布了新的文献求助10
20秒前
温暖的问候完成签到,获得积分10
20秒前
21秒前
21秒前
顾矜应助Irelia采纳,获得50
22秒前
23秒前
x00114514完成签到,获得积分10
23秒前
科研通AI6应助xiao茗采纳,获得10
24秒前
可爱的函函应助wyw采纳,获得10
24秒前
24秒前
changmxiao完成签到,获得积分10
25秒前
27秒前
15656869999发布了新的文献求助10
27秒前
27秒前
我思故我在完成签到,获得积分10
28秒前
小二郎应助会幸福的采纳,获得10
29秒前
29秒前
是阿刁完成签到,获得积分10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229