MLDSPP: Bacterial Promoter Prediction Tool Using DNA Structural Properties with Machine Learning and Explainable AI

可解释性 机器学习 人工智能 发起人 计算生物学 计算机科学 基因组 基因组学 细菌基因组大小 基因 生物 遗传学 基因表达
作者
Subhojit Paul,Kaushika Olymon,Gustavo Sganzerla Martinez,Sharmilee Sarkar,Venkata Rajesh Yella,Aditya Kumar
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2705-2719 被引量:1
标识
DOI:10.1021/acs.jcim.3c02017
摘要

Bacterial promoters play a crucial role in gene expression by serving as docking sites for the transcription initiation machinery. However, accurately identifying promoter regions in bacterial genomes remains a challenge due to their diverse architecture and variations. In this study, we propose MLDSPP (Machine Learning and Duplex Stability based Promoter prediction in Prokaryotes), a machine learning-based promoter prediction tool, to comprehensively screen bacterial promoter regions in 12 diverse genomes. We leveraged biologically relevant and informative DNA structural properties, such as DNA duplex stability and base stacking, and state-of-the-art machine learning (ML) strategies to gain insights into promoter characteristics. We evaluated several machine learning models, including Support Vector Machines, Random Forests, and XGBoost, and assessed their performance using accuracy, precision, recall, specificity, F1 score, and MCC metrics. Our findings reveal that XGBoost outperformed other models and current state-of-the-art promoter prediction tools, namely Sigma70pred and iPromoter2L, achieving F1-scores >95% in most systems. Significantly, the use of one-hot encoding for representing nucleotide sequences complements these structural features, enhancing our XGBoost model's predictive capabilities. To address the challenge of model interpretability, we incorporated explainable AI techniques using Shapley values. This enhancement allows for a better understanding and interpretation of the predictions of our model. In conclusion, our study presents MLDSPP as a novel, generic tool for predicting promoter regions in bacteria, utilizing original downstream sequences as nonpromoter controls. This tool has the potential to significantly advance the field of bacterial genomics and contribute to our understanding of gene regulation in diverse bacterial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
AUV发布了新的文献求助10
2秒前
第二十篇完成签到,获得积分10
2秒前
3秒前
3秒前
20240901完成签到,获得积分10
4秒前
任盈盈完成签到,获得积分10
5秒前
123456发布了新的文献求助10
7秒前
aspen完成签到,获得积分10
9秒前
张努力发布了新的文献求助10
9秒前
9秒前
AUV完成签到,获得积分10
9秒前
烂草叶子完成签到,获得积分10
11秒前
Z.完成签到,获得积分10
11秒前
12秒前
tangzelun完成签到,获得积分10
13秒前
酷波er应助诸嵩采纳,获得10
15秒前
16秒前
l玖发布了新的文献求助10
18秒前
20秒前
顺心小凝发布了新的文献求助10
21秒前
独特乘风完成签到,获得积分10
22秒前
华仔应助aspen采纳,获得10
22秒前
虚拟的蘑菇完成签到,获得积分10
23秒前
爆米花应助小雄采纳,获得10
24秒前
blawxx发布了新的文献求助10
25秒前
26秒前
pcr163应助Zxp采纳,获得200
26秒前
英姑应助Demon采纳,获得10
27秒前
serina完成签到 ,获得积分10
27秒前
akkk626完成签到 ,获得积分10
27秒前
30秒前
31秒前
慕冰蝶发布了新的文献求助10
33秒前
周稅驳回了打打应助
34秒前
Ariok完成签到,获得积分20
34秒前
卟乖发布了新的文献求助30
34秒前
36秒前
aspen发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765