MLDSPP: Bacterial Promoter Prediction Tool Using DNA Structural Properties with Machine Learning and Explainable AI

可解释性 机器学习 人工智能 发起人 计算生物学 计算机科学 基因组 基因组学 细菌基因组大小 基因 生物 遗传学 基因表达
作者
Subhojit Paul,Kaushika Olymon,Gustavo Sganzerla Martinez,Sharmilee Sarkar,Venkata Rajesh Yella,Aditya Kumar
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2705-2719 被引量:9
标识
DOI:10.1021/acs.jcim.3c02017
摘要

Bacterial promoters play a crucial role in gene expression by serving as docking sites for the transcription initiation machinery. However, accurately identifying promoter regions in bacterial genomes remains a challenge due to their diverse architecture and variations. In this study, we propose MLDSPP (Machine Learning and Duplex Stability based Promoter prediction in Prokaryotes), a machine learning-based promoter prediction tool, to comprehensively screen bacterial promoter regions in 12 diverse genomes. We leveraged biologically relevant and informative DNA structural properties, such as DNA duplex stability and base stacking, and state-of-the-art machine learning (ML) strategies to gain insights into promoter characteristics. We evaluated several machine learning models, including Support Vector Machines, Random Forests, and XGBoost, and assessed their performance using accuracy, precision, recall, specificity, F1 score, and MCC metrics. Our findings reveal that XGBoost outperformed other models and current state-of-the-art promoter prediction tools, namely Sigma70pred and iPromoter2L, achieving F1-scores >95% in most systems. Significantly, the use of one-hot encoding for representing nucleotide sequences complements these structural features, enhancing our XGBoost model's predictive capabilities. To address the challenge of model interpretability, we incorporated explainable AI techniques using Shapley values. This enhancement allows for a better understanding and interpretation of the predictions of our model. In conclusion, our study presents MLDSPP as a novel, generic tool for predicting promoter regions in bacteria, utilizing original downstream sequences as nonpromoter controls. This tool has the potential to significantly advance the field of bacterial genomics and contribute to our understanding of gene regulation in diverse bacterial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等风发布了新的文献求助10
刚刚
1秒前
SciGPT应助何昆采纳,获得10
1秒前
1秒前
干净雁芙发布了新的文献求助10
2秒前
lzzmy发布了新的文献求助10
2秒前
2秒前
科目三应助搞怪梦曼采纳,获得10
3秒前
3秒前
3秒前
3秒前
脑洞疼应助gj采纳,获得10
4秒前
杨军发布了新的文献求助10
4秒前
二分完成签到,获得积分20
4秒前
打打应助Alora采纳,获得10
4秒前
5秒前
6秒前
壮观人达发布了新的文献求助10
6秒前
6秒前
8秒前
potato_bel发布了新的文献求助10
8秒前
Hello应助唐可可采纳,获得10
9秒前
9秒前
9秒前
等风完成签到,获得积分10
9秒前
甜蜜的荟发布了新的文献求助10
10秒前
orixero应助諵十一采纳,获得10
11秒前
12秒前
自由的32发布了新的文献求助10
12秒前
12秒前
CipherSage应助清脆松采纳,获得10
12秒前
luan完成签到,获得积分20
12秒前
13秒前
田様应助cc采纳,获得10
14秒前
14秒前
15秒前
lzzmy完成签到,获得积分10
15秒前
15秒前
壮观人达完成签到,获得积分10
16秒前
一颗菠菜发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028498
求助须知:如何正确求助?哪些是违规求助? 4264328
关于积分的说明 13293174
捐赠科研通 4072431
什么是DOI,文献DOI怎么找? 2227423
邀请新用户注册赠送积分活动 1235825
关于科研通互助平台的介绍 1160185