CMAQ
环境科学
天气研究与预报模式
空气质量指数
气溶胶
分摊
大气科学
微粒
白天
道路扬尘
环境化学
气象学
化学
地理
有机化学
地质学
政治学
法学
作者
Lianhuan Fan,Xuejun Yan,Qianna Du,Junxiao Zhang,Guanghui Liu,Yuxin Yang,Ya‐Ru Miao,Guiqin Zhang
标识
DOI:10.1016/j.apr.2023.102008
摘要
Secondary organic aerosol (SOA) accounts for a significant fraction of fine particulate matter (PM2.5) and is a crucial component that affects climate and public health. However, the formation of SOA in urban areas remains unclear and sources contributed to SOA are poorly characterized. In this study, we combined ambient measurements and the Weather Research and Forecasting (WRF)-Community Multi-scale Air Quality (CMAQ) modeling system to investigate the evolution of SOA during winter over Jinan city in China. Relative contributions of different anthropogenic sources to ambient SOA were subsequently probed by the Integrated Source Apportionment Method (ISAM) to explore the impact of anthropogenic emissions. The mean concentration of SOA was 11.2 μg m−3, accounting for 29.4% in PM2.5, and SOA concentrations on clean days (4.9 μg m−3) increased by 4.8 times on polluted days (23.3 μg m−3), and strong correlation between the elevated PM2.5 episodes and increased SOA concentrations was found (R2 > 0.5). In addition, SOA concentrations and the proportion of SOA in PM2.5 were higher during the daytime (24.9 μg m−3, 32.4%) compared to nighttime (21.9 μg m−3, 25.1%) on polluted days, which is primarily attributed to the intense atmospheric photochemical reactions and anthropogenic activities. Mobile sources act as the dominant contributor to SOA (57.6%) and road diesel emissions (30.9%) made the largest contribution to SOA, followed by non-road mobile sources (17.4%) among subsectors in mobile sources. This study sheds new insights into ambient SOA formation and SOA source apportionment for typical megacities in China, guiding the design of source-oriented regulation efforts on SOA mitigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI