Analysis of microscopic deformation mechanism of SiCp/Al composites induced by ultrasonic vibration nanoindentation

材料科学 复合材料 缩进 超声波传感器 纳米压痕 振动 滑脱 变形机理 位错 微观结构 声学 物理
作者
Zhaojie Yuan,Daohui Xiang,Peicheng Peng,Yanqin Li,Zhiqiang Zhang,Binghao Li,Bo Su,Guofu Gao,Bo Zhao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:434: 140073-140073 被引量:5
标识
DOI:10.1016/j.jclepro.2023.140073
摘要

Ultrasonic vibration machining technology affords environmentally friendly dry cutting without employing a cutting fluid and has been applied to the macro-scale dry cutting precision machining of SiCp/Al composites. However, the high-frequency vibration on the atomic-scale deformation mechanism of such materials remains unclear. Hence, this paper combines the molecular dynamics simulations (MD) with ultrasonic vibration indentation tests to investigate the effect of ultrasonic vibration on the multiscale deformation of SiCp/Al composites. The results demonstrate that the vibration amplitude exceeding the lattice constant (4.05 Å) of Al induces the plastic flow of Al atoms after breaking through the interatomic force. On the one hand, the ultrasonic high-frequency vibration energy accelerates the interfacial failure and the SiC particle fragmentation and promotes the dislocation movement to form the dislocation loop. On the other hand, compared with conventional indentation, ultrasonic vibration energy reduces the FCC phase transition rate by up to 40.8% and improves the toughness of the composites. Meanwhile, the high-frequency impact energy promotes the material to produce lattice distortion and subgranular grains, where grain slippage and lamination faults occur at the grain boundaries. Besides, the maximum depth of the material impact layer is about 1.45 times that of a conventional indentation, which contributes to the material being removed efficiently. The results of this research provide potential insights into ultrasonic vibration-assisted micro and nano removal processing of SiCp/Al composites, which could help to expand the efficient and precise clean processing of this type of material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abc发布了新的文献求助10
刚刚
Jasper应助山茶采纳,获得10
刚刚
隐形曼青应助刘丰铭采纳,获得10
刚刚
orixero应助韩霖采纳,获得10
刚刚
聪慧的土豆关注了科研通微信公众号
刚刚
2秒前
2秒前
解语花发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
Stella应助甜的瓜采纳,获得10
4秒前
6秒前
FashionBoy应助蔚蓝的天空采纳,获得10
6秒前
kk发布了新的文献求助10
6秒前
LFC发布了新的文献求助10
6秒前
7秒前
CodeCraft应助周苗采纳,获得10
7秒前
FashionBoy应助优秀的凡蕾采纳,获得10
8秒前
8秒前
JamesPei应助zpw123123采纳,获得10
9秒前
9秒前
9秒前
爱笑以松完成签到,获得积分10
9秒前
10秒前
mh发布了新的文献求助50
10秒前
科研通AI6应助正直的班采纳,获得10
11秒前
11秒前
vertl发布了新的文献求助10
12秒前
12秒前
13秒前
Seathern发布了新的文献求助10
13秒前
韩霖发布了新的文献求助10
14秒前
刘丰铭发布了新的文献求助10
14秒前
14秒前
gao杲gao完成签到,获得积分10
14秒前
14秒前
斯文败类应助happiness采纳,获得10
15秒前
zx完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013