摘要
Abstract Phosphatidyl-myo-inositol mannosides (PIMs), Lipomannan (LM), and Lipoarabinomannan (LAM) are essential components of the cell envelopes of mycobacteria. At the beginning of the biosynthesis of these compounds, phosphatidylinositol (PI) is mannosylated and acylated by various enzymes to produce Ac1/2PIM4, which is used to synthesize either Ac1/2PIM6 or LM/LAM. The protein PimE, a membrane-bound glycosyltransferase (GT-C), catalyzes the addition of a mannose group to Ac1PIM4 to produce Ac1PIM5, using polyprenolphosphate mannose (PPM) as the mannose donor. PimE-deleted Mycobacterium smegmatis (Msmeg) showed structural deformity and increased antibiotic and copper sensitivity. Despite knowing that the mutation D58A caused inactivity in Msmeg, how PimE catalyzes the transfer of mannose from PPM to Ac1/2PIM4 remains unknown. In this study, analyzing the AlphaFold structure of PimE revealed the presence of a tunnel through the D58 residue with two differently charged gates. Molecular docking suggested PPM binds to the hydrophobic tunnel gate, whereas Ac1PIM4 binds to the positively charged tunnel gate. Molecular dynamics (MD) simulations further demonstrated the critical roles of the residues N55, F87, L89, Y163, Q165, K197, L198, R251, F277, W324, H326, and I375 in binding PPM and Ac1PIM4. The mutation D58A caused a faster release of PPM from the catalytic tunnel, explaining the loss of PimE activity. Along with a hypothetical mechanism of mannose transfer by PimE, we also observe the presence of tunnels through a negatively charged aspartate or glutamate with two differently-charged gates among most GT-C enzymes. Common hydrophobic gates of GT-C enzymes probably harbor sugar donors, whereas, differently-charged tunnel gates accommodate various sugar-acceptors.