Driver’s facial expression recognition: A comprehensive survey

面部表情 计算机科学 背景(考古学) 分类 幸福 愤怒 人工智能 心理学 社会心理学 生物 精神科 古生物学
作者
Ibtissam Saadi,Douglas W. Cunningham,Abdelmalik Taleb‐Ahmed,Abdenour Hadid,Yassin El Hillali
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:242: 122784-122784 被引量:1
标识
DOI:10.1016/j.eswa.2023.122784
摘要

Driving is an integral part of daily life for millions of people worldwide, and it has a profound impact on road safety and human health. The emotional state of the driver, including feelings of anger, happiness, or fear, can significantly affect their ability to make safe driving decisions. Recognizing the facial expressions of drivers(DFER) has emerged as a promising technique for improving road safety and can provide valuable information about their emotions, This information can be used by intelligent transportation systems (ITS), like advanced driver assistance systems (ADAS) to take appropriate decision, such as alerting the driver or intervening in the driving process, to prevent the potential risks. This survey paper presents a comprehensive survey of recent studies that focus on the problem of recognizing the facial expression of driver recognition in the driving context from 2018 to March 2023. Specifically, we examine studies that address the recognition of the driver's emotion using facial expressions and explore the challenges that exist in this field, such as illumination conditions, occlusion, and head poses. Our survey includes an analysis of different techniques and methods used to identify and categorize specific expressions or emotions of the driver. We begin by reviewing and comparing available datasets and summarizing state-of-the-art methods, including machine learning-based methods, deep learning-based methods, and hybrid methods. We also identify limitations and potential areas for improvement. Overall, our survey highlights the importance of recognizing driver facial expressions in improving road safety and provides valuable insights into recent developments and future research directions in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观翠彤发布了新的文献求助10
刚刚
ww完成签到,获得积分20
刚刚
乐橙发布了新的文献求助20
刚刚
1秒前
kyfw发布了新的文献求助10
2秒前
乐观的冬瓜关注了科研通微信公众号
2秒前
冷傲书萱应助Mumu采纳,获得10
4秒前
4秒前
wanci应助言言言言采纳,获得10
6秒前
yph完成签到,获得积分10
6秒前
踏雪白狼完成签到,获得积分10
7秒前
7秒前
8秒前
蓝草发布了新的文献求助10
9秒前
9秒前
10秒前
CC完成签到,获得积分10
11秒前
ken发布了新的文献求助10
11秒前
Bake完成签到,获得积分10
14秒前
哈哈发布了新的文献求助30
14秒前
14秒前
研友_8DAv0L发布了新的文献求助10
15秒前
希望天下0贩的0应助xny采纳,获得10
15秒前
8R60d8应助小苦瓜采纳,获得10
16秒前
18秒前
香蕉觅云应助沉默安波采纳,获得10
18秒前
flyoverstack关注了科研通微信公众号
18秒前
19秒前
20秒前
彭于晏应助研友_8DAv0L采纳,获得10
20秒前
cuicui发布了新的文献求助10
20秒前
Ship发布了新的文献求助10
22秒前
24秒前
ken完成签到,获得积分10
26秒前
乐乐应助橙c美式采纳,获得10
27秒前
28秒前
Ship完成签到,获得积分10
30秒前
qqz发布了新的文献求助10
30秒前
31秒前
长情伊应助摸鱼之神采纳,获得10
31秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291