人工智能
深度学习
特征(语言学)
药物发现
药品
特征学习
卷积神经网络
代表(政治)
药物靶点
G蛋白偶联受体
计算生物学
图形
计算机科学
药物开发
机器学习
模式识别(心理学)
生物
生物信息学
受体
理论计算机科学
药理学
生物化学
哲学
语言学
政治
政治学
法学
作者
Xingyue Gu,Junkai Liu,Yue Yu,Pei Xiao,Fei Guo
出处
期刊:Methods
[Elsevier]
日期:2024-03-01
卷期号:223: 75-82
标识
DOI:10.1016/j.ymeth.2024.01.017
摘要
The accurate identification of drug–protein interactions (DPIs) is crucial in drug development, especially concerning G protein-coupled receptors (GPCRs), which are vital targets in drug discovery. However, experimental validation of GPCR–drug pairings is costly, prompting the need for accurate predictive methods. To address this, we propose MFD–GDrug, a multimodal deep learning model. Leveraging the ESM pretrained model, we extract protein features and employ a CNN for protein feature representation. For drugs, we integrated multimodal features of drug molecular structures, including three-dimensional features derived from Mol2vec and the topological information of drug graph structures extracted through Graph Convolutional Neural Networks (GCN). By combining structural characterizations and pretrained embeddings, our model effectively captures GPCR–drug interactions. Our tests on leading GPCR–drug interaction datasets show that MFD–GDrug outperforms other methods, demonstrating superior predictive accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI