Embracing the power of AI in retail platform operations: Considering the showrooming effect and consumer returns

业务 供应链 稳健性(进化) 服务(商务) 营销 计算机科学 生物化学 化学 基因
作者
Qiang Wang,Xiang Ji,Nenggui Zhao
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:182: 103409-103409 被引量:10
标识
DOI:10.1016/j.tre.2023.103409
摘要

This study examines a duopoly market comprising an online retail platform and a physical store, both of them selling experience-based products to consumers who are unaware of the products' fitness. The platform could introduce artificial intelligence (AI) technology into retail operations to address consumers' fitness uncertainty and then gain market share, while the physical store could exert a service effort to recapture the market, potentially facilitating showrooming behavior. Operational decisions including pricing, AI application, and service effort exertion are investigated in the cases where consumers are allowed and unallowed to return unsuitable products. We first develop a theoretical model of dual-channel retailing to determine the equilibrium operational decisions for the supply chain members, and then examine the interactions between these operational decisions and consumers' showrooming behaviors. Subsequently, we perform numerical simulations to verify the robustness of the theoretical findings. Results indicate that both AI application and service efforts exertion will strengthen consumers' showrooming effect, especially when the cost of AI application is relatively low. Moreover, regardless of whether the store implements the service effort or not, the platform prefers to apply AI technology when consumers are allowed to return products. Furthermore, the physical store will always exert a service effort, and with the service effort, the application of AI technology in the retail platform operation could effectively mitigate the impact of consumer return on supply chain members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助waws采纳,获得10
1秒前
mouxq发布了新的文献求助10
2秒前
3秒前
3秒前
驿寄梅花完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
哎呀妈呀发布了新的文献求助10
6秒前
auguste发布了新的文献求助10
7秒前
11完成签到,获得积分20
8秒前
一笑倾城发布了新的文献求助10
10秒前
zho发布了新的文献求助10
10秒前
11秒前
自渡发布了新的文献求助10
11秒前
yoyo完成签到,获得积分10
12秒前
IKUN发布了新的文献求助20
13秒前
yyy完成签到 ,获得积分10
13秒前
11发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
15秒前
桃子应助科研通管家采纳,获得50
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
15秒前
西北吴彦祖完成签到,获得积分10
16秒前
16秒前
17秒前
六烃季铵完成签到,获得积分10
18秒前
神内打工人完成签到 ,获得积分10
19秒前
momo完成签到,获得积分10
19秒前
19秒前
冷静雅香发布了新的文献求助10
21秒前
KEHUGE发布了新的文献求助10
21秒前
mumu完成签到 ,获得积分10
22秒前
调研昵称发布了新的文献求助10
22秒前
IKUN完成签到,获得积分10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798