Embracing the power of AI in retail platform operations: Considering the showrooming effect and consumer returns

业务 供应链 稳健性(进化) 服务(商务) 营销 计算机科学 生物化学 基因 化学
作者
Qiang Wang,Xiang Ji,Nenggui Zhao
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:182: 103409-103409 被引量:10
标识
DOI:10.1016/j.tre.2023.103409
摘要

This study examines a duopoly market comprising an online retail platform and a physical store, both of them selling experience-based products to consumers who are unaware of the products' fitness. The platform could introduce artificial intelligence (AI) technology into retail operations to address consumers' fitness uncertainty and then gain market share, while the physical store could exert a service effort to recapture the market, potentially facilitating showrooming behavior. Operational decisions including pricing, AI application, and service effort exertion are investigated in the cases where consumers are allowed and unallowed to return unsuitable products. We first develop a theoretical model of dual-channel retailing to determine the equilibrium operational decisions for the supply chain members, and then examine the interactions between these operational decisions and consumers' showrooming behaviors. Subsequently, we perform numerical simulations to verify the robustness of the theoretical findings. Results indicate that both AI application and service efforts exertion will strengthen consumers' showrooming effect, especially when the cost of AI application is relatively low. Moreover, regardless of whether the store implements the service effort or not, the platform prefers to apply AI technology when consumers are allowed to return products. Furthermore, the physical store will always exert a service effort, and with the service effort, the application of AI technology in the retail platform operation could effectively mitigate the impact of consumer return on supply chain members.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独角兽完成签到 ,获得积分10
刚刚
lzqlzqlzqlzqlzq完成签到,获得积分10
1秒前
Geng完成签到,获得积分10
2秒前
2秒前
宇_完成签到,获得积分20
2秒前
香蕉觅云应助NEMO采纳,获得10
2秒前
3秒前
3秒前
星辰大海应助247793325采纳,获得20
3秒前
3秒前
灵巧荆发布了新的文献求助10
3秒前
3秒前
haimianbaobao完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
SAW发布了新的文献求助10
6秒前
爆米花应助LiShin采纳,获得10
6秒前
Jasper应助jxcandice采纳,获得10
7秒前
7秒前
Owen应助雾见春采纳,获得10
8秒前
aiming发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
无辜之卉发布了新的文献求助10
10秒前
yty发布了新的文献求助10
10秒前
烟花应助卡夫卡没在海边采纳,获得10
11秒前
456发布了新的文献求助10
12秒前
传奇3应助温暖以蓝采纳,获得10
12秒前
辛勤的仰完成签到,获得积分10
12秒前
如意新晴完成签到,获得积分10
12秒前
12秒前
zrk完成签到,获得积分20
13秒前
13秒前
szmsnail发布了新的文献求助20
13秒前
Ava应助Monik采纳,获得10
13秒前
打打应助zhui采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794