Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LZX发布了新的文献求助10
1秒前
2秒前
南风知我意完成签到,获得积分20
2秒前
裴115发布了新的文献求助10
3秒前
小鬼完成签到,获得积分10
3秒前
4秒前
sheeptime发布了新的文献求助10
4秒前
ding应助gyro采纳,获得10
5秒前
Mine_cherry应助smh采纳,获得30
5秒前
5秒前
小杨完成签到,获得积分10
5秒前
6秒前
123发布了新的文献求助10
6秒前
7秒前
beforethedawn完成签到,获得积分10
7秒前
田田田田完成签到,获得积分10
7秒前
8秒前
蓝天应助Brass采纳,获得10
9秒前
大龙哥886应助飞快的映菱采纳,获得10
9秒前
隐形曼青应助飞快的映菱采纳,获得10
9秒前
hansongluo发布了新的文献求助10
9秒前
9秒前
汉堡包应助STP顶峰相见采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
Hello应助王图图采纳,获得10
10秒前
10秒前
zuihaodewomen发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
谢小盟发布了新的文献求助200
11秒前
天天快乐应助水文新绿微采纳,获得10
11秒前
子期完成签到 ,获得积分10
12秒前
张先森完成签到,获得积分10
12秒前
zhaolg完成签到,获得积分20
12秒前
ee发布了新的文献求助10
13秒前
13秒前
www发布了新的文献求助10
13秒前
个性语堂发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712429
求助须知:如何正确求助?哪些是违规求助? 5209804
关于积分的说明 15267369
捐赠科研通 4864354
什么是DOI,文献DOI怎么找? 2611366
邀请新用户注册赠送积分活动 1561656
关于科研通互助平台的介绍 1518919