亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Okypete完成签到,获得积分20
6秒前
Niuludi关注了科研通微信公众号
8秒前
丘比特应助oioioioi采纳,获得10
22秒前
26秒前
Niuludi发布了新的文献求助10
31秒前
Komorebi发布了新的文献求助10
32秒前
赘婿应助科研通管家采纳,获得30
34秒前
斯文败类应助科研通管家采纳,获得10
34秒前
Komorebi完成签到,获得积分20
45秒前
48秒前
香蕉觅云应助路边采纳,获得10
48秒前
勤能补拙发布了新的文献求助10
53秒前
1分钟前
科研通AI5应助Run采纳,获得30
1分钟前
勤能补拙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
木木圆发布了新的文献求助10
1分钟前
研友_VZG7GZ应助木木圆采纳,获得10
1分钟前
小马甲应助勤能补拙采纳,获得10
2分钟前
隐形曼青应助WLL采纳,获得10
2分钟前
2分钟前
WLL发布了新的文献求助10
2分钟前
77完成签到 ,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
ZanE完成签到,获得积分10
2分钟前
2分钟前
2分钟前
4分钟前
顺利若山完成签到,获得积分10
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Lh发布了新的文献求助10
4分钟前
qyp发布了新的文献求助10
4分钟前
传奇3应助三哥采纳,获得30
5分钟前
5分钟前
leoan完成签到,获得积分10
5分钟前
阔达雨灵发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148439
求助须知:如何正确求助?哪些是违规求助? 4344765
关于积分的说明 13529829
捐赠科研通 4186787
什么是DOI,文献DOI怎么找? 2295877
邀请新用户注册赠送积分活动 1296291
关于科研通互助平台的介绍 1240104