Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘雅蕊完成签到 ,获得积分10
刚刚
ZeKaWa应助keyan123采纳,获得10
3秒前
将来路远发布了新的文献求助10
5秒前
Qinqinasm完成签到,获得积分10
6秒前
脑洞疼应助Jodie采纳,获得10
6秒前
xinghui应助清爽的梦秋采纳,获得10
10秒前
优美的巧蕊完成签到,获得积分10
11秒前
悦耳的咖啡豆完成签到,获得积分10
13秒前
wonder123完成签到,获得积分10
14秒前
cokk完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
后少年的story完成签到,获得积分10
19秒前
研友_VZG7GZ应助cokk采纳,获得10
19秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
20秒前
22秒前
22秒前
ZeKaWa应助行者无疆采纳,获得10
23秒前
25秒前
25秒前
将来路远关注了科研通微信公众号
26秒前
小马甲应助钟鸿盛Domi采纳,获得10
26秒前
27秒前
忧郁的忆南完成签到 ,获得积分10
28秒前
科研通AI6应助我我采纳,获得10
31秒前
Jodie发布了新的文献求助10
31秒前
31秒前
32秒前
菠萝李发布了新的文献求助10
32秒前
擎天柱完成签到,获得积分10
32秒前
阮文名完成签到,获得积分10
33秒前
33秒前
33秒前
34秒前
鲁珊珊发布了新的文献求助10
36秒前
球球完成签到,获得积分10
38秒前
38秒前
17完成签到 ,获得积分10
40秒前
嘿嘿发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915