已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
简单白风完成签到 ,获得积分10
2秒前
成就的笑南完成签到 ,获得积分0
3秒前
4秒前
酷酷云朵完成签到 ,获得积分10
6秒前
6秒前
Komorebi完成签到 ,获得积分10
6秒前
alex12259完成签到 ,获得积分10
7秒前
7秒前
南山发布了新的文献求助10
9秒前
wcy完成签到 ,获得积分10
11秒前
12秒前
12秒前
16秒前
20秒前
丝竹丛中墨未干完成签到,获得积分10
23秒前
bkagyin应助yyy采纳,获得10
24秒前
Jay枫发布了新的文献求助10
25秒前
猪脑过载完成签到,获得积分10
27秒前
Ava应助陈思采纳,获得10
30秒前
iaskwho完成签到 ,获得积分10
32秒前
Jay枫完成签到,获得积分20
33秒前
34秒前
Criminology34举报zhang求助涉嫌违规
37秒前
chengxiping发布了新的文献求助10
38秒前
斯文败类应助忽悠老羊采纳,获得10
39秒前
42秒前
酷炫的安雁完成签到 ,获得积分10
43秒前
BowieHuang应助Cl采纳,获得10
44秒前
没想到羽毛完成签到,获得积分20
44秒前
别摆烂了完成签到,获得积分10
44秒前
45秒前
45秒前
畅快代柔完成签到 ,获得积分10
46秒前
49秒前
魏凯源完成签到,获得积分10
49秒前
OU完成签到,获得积分10
50秒前
lkx发布了新的文献求助10
50秒前
完美世界应助DDL采纳,获得10
51秒前
Saunak完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040