亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI6应助壹玖一陆采纳,获得10
4秒前
6秒前
我是老大应助wuzihao采纳,获得10
6秒前
max完成签到,获得积分10
6秒前
8秒前
13秒前
CodeCraft应助传统的书包采纳,获得30
16秒前
Evaporate发布了新的文献求助10
16秒前
16秒前
21秒前
小王完成签到 ,获得积分10
22秒前
浮游应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
26秒前
ding应助科研通管家采纳,获得10
26秒前
浮浮世世应助科研通管家采纳,获得30
26秒前
浮游应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
tdtk发布了新的文献求助10
26秒前
张步完成签到 ,获得积分10
27秒前
28秒前
31秒前
老老实实好好活着完成签到,获得积分10
31秒前
35秒前
zozox完成签到 ,获得积分10
38秒前
李健的小迷弟应助nanne采纳,获得30
38秒前
39秒前
gzwhh发布了新的文献求助30
44秒前
酷波er应助tdtk采纳,获得10
45秒前
46秒前
JamesPei应助zorro3574采纳,获得10
47秒前
50秒前
52秒前
凭什么完成签到,获得积分10
52秒前
54秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助babao采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490