Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaowei Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:238: 10-21 被引量:1
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
青年才俊发布了新的文献求助10
2秒前
橘子的橘发布了新的文献求助10
3秒前
hahah完成签到,获得积分20
3秒前
任性的小C发布了新的文献求助30
4秒前
隐形曼青应助fbpuf采纳,获得10
4秒前
6秒前
盼盼发布了新的文献求助10
6秒前
Cryconnor发布了新的文献求助10
7秒前
梦里贪乐完成签到,获得积分10
7秒前
YEEze发布了新的文献求助20
8秒前
123沙发布了新的文献求助10
9秒前
源老头发布了新的文献求助10
9秒前
锣大炮发布了新的文献求助10
10秒前
852应助18746005898采纳,获得10
12秒前
英俊的铭应助椿1采纳,获得10
13秒前
13秒前
油麦菜发布了新的文献求助10
13秒前
14秒前
雷明星完成签到,获得积分10
18秒前
ZD发布了新的文献求助10
19秒前
19秒前
顾矜应助冯冯采纳,获得10
20秒前
斯文败类应助执行正义采纳,获得10
21秒前
希望天下0贩的0应助Keven采纳,获得10
22秒前
22秒前
22秒前
26秒前
FashionBoy应助zdl采纳,获得10
27秒前
LIIIIIIII完成签到,获得积分10
27秒前
lwroche发布了新的文献求助10
28秒前
28秒前
dd发布了新的文献求助10
29秒前
30秒前
31秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
领导范儿应助科研通管家采纳,获得20
32秒前
32秒前
情怀应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
the women :a novel 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055654
求助须知:如何正确求助?哪些是违规求助? 2712323
关于积分的说明 7430846
捐赠科研通 2357251
什么是DOI,文献DOI怎么找? 1248668
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144