Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有重名的应助cc采纳,获得10
1秒前
2秒前
项彼夜完成签到,获得积分10
2秒前
2秒前
kkkcv发布了新的文献求助10
2秒前
yushiolo发布了新的文献求助10
3秒前
科研小菜鸡完成签到,获得积分10
3秒前
越幸运完成签到 ,获得积分10
5秒前
5秒前
wuxunxun2015发布了新的文献求助10
7秒前
不拿拿完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
不拿拿发布了新的文献求助10
10秒前
11秒前
锋回露转123完成签到,获得积分10
12秒前
SallyLulu完成签到 ,获得积分10
12秒前
无私雅柏完成签到 ,获得积分10
13秒前
sxb10101给BowieHuang的求助进行了留言
15秒前
15秒前
朴实的垣完成签到,获得积分10
15秒前
香飘飘发布了新的文献求助10
16秒前
mk91完成签到,获得积分10
17秒前
Ryan完成签到,获得积分10
18秒前
18秒前
1點點cui完成签到 ,获得积分10
19秒前
lily完成签到,获得积分10
20秒前
21秒前
Joe完成签到,获得积分10
21秒前
Yuri发布了新的文献求助10
21秒前
王王完成签到 ,获得积分10
22秒前
22秒前
wanci应助香飘飘采纳,获得10
23秒前
蓝天发布了新的文献求助10
23秒前
25秒前
体贴洋葱完成签到 ,获得积分10
26秒前
munawar完成签到 ,获得积分10
26秒前
行云流水完成签到 ,获得积分10
29秒前
30秒前
House4完成签到,获得积分10
32秒前
刘子琪完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851