Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助局长采纳,获得10
1秒前
1秒前
7777完成签到,获得积分20
1秒前
小可不怕困难完成签到,获得积分10
1秒前
2秒前
科研通AI6应助k_1采纳,获得10
2秒前
桐桐应助k_1采纳,获得10
2秒前
2秒前
3秒前
3秒前
夏至完成签到 ,获得积分10
3秒前
4秒前
川彐发布了新的文献求助10
4秒前
思源应助郑鹏飞采纳,获得10
5秒前
5秒前
星空发布了新的文献求助20
6秒前
RS6发布了新的文献求助10
7秒前
DOPAMINE关注了科研通微信公众号
7秒前
yon应助lemonlight采纳,获得10
7秒前
Lucas应助Aprial采纳,获得10
7秒前
7秒前
霜糖完成签到,获得积分10
7秒前
de发布了新的文献求助10
8秒前
lalala发布了新的文献求助10
8秒前
Orange应助gaogao采纳,获得10
8秒前
zqh发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
NexusExplorer应助黄河采纳,获得10
9秒前
科研通AI6应助ddn采纳,获得10
9秒前
小H完成签到,获得积分10
9秒前
独特的兰发布了新的文献求助10
10秒前
可爱的函函应助Abner采纳,获得10
10秒前
10秒前
12秒前
叨叨小夫夫完成签到,获得积分10
12秒前
一一发布了新的文献求助10
12秒前
端庄的梦山完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657