Recognition of wheat rusts in a field environment based on improved DenseNet

领域(数学) 农业工程 环境科学 农学 工程类 数学 生物 纯数学
作者
Shenglong Chang,Guijun Yang,Jinpeng Cheng,Ziheng Feng,Zehua Fan,Xinming Ma,Yong Li,Xiaodong Yang,Chunjiang Zhao
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:238: 10-21 被引量:7
标识
DOI:10.1016/j.biosystemseng.2023.12.016
摘要

Currently, the main methods for detecting plant diseases are sampling and manual visual inspection. However, these methods are time-consuming, laborious and prone to misinterpretation. Rapid advances in Deep Learning (DL) techniques offer new possibilities. This study focused on analysing the confounding factors among three types of wheat rust (stripe rust, leaf rust and stem rust) and aimed to achieve higher classification accuracy. The following approaches were used: (1) Images were collected from several crops and diseases: Wheat Rusts Dataset (WRD), Wheat Common Disease Dataset (WDD), and Common Poaceae Disease Dataset (PDD); (2) Seven common convolutional neural network (CNN) models were made and their performance compared. DenseNet121 was selected as the base model, and its classification results further analysed. The results of the above analyses were then considered using phenotypic morphology and model structure analysis, as well as potential confounder discussions; (3) Adjustments and optimisations were made based on the identified confounding factors. The final improved model, designated Imp-DenseNet, achieved the following accuracies with different datasets: Top-1 accuracy = 98.32% (WRD), Top-3 accuracy = 97.30% (WDD) and Top-5 accuracy = 96.60% (PDD) (Top-x Accuracy refers to the accuracy of the top-ranked category that matches or containing the actual results). The study revealed the potential factors contributing to the confusion among the three wheat rusts and successfully achieved higher accuracy. It can provide a new perspective for future research on other diseases of wheat or other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xslj发布了新的文献求助10
1秒前
优雅的冰岚完成签到,获得积分10
3秒前
方勇飞发布了新的文献求助10
3秒前
苏翰英发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
sunny完成签到 ,获得积分10
7秒前
乖猫要努力应助董海涛采纳,获得20
8秒前
哈哈发布了新的文献求助10
9秒前
9秒前
11秒前
13秒前
13秒前
maolao完成签到,获得积分10
14秒前
iNk应助科研通管家采纳,获得20
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
SYLH应助笔墨留香采纳,获得20
17秒前
XCHI发布了新的文献求助10
17秒前
18秒前
Qing发布了新的文献求助10
19秒前
金滢发布了新的文献求助10
20秒前
20秒前
21秒前
fireking_sid完成签到,获得积分10
22秒前
22秒前
小蘑菇应助咕噜咕噜噜熊采纳,获得10
22秒前
23秒前
sunshine发布了新的文献求助10
23秒前
jessica发布了新的文献求助10
24秒前
24秒前
25秒前
yxl要顺利毕业_发6篇C完成签到 ,获得积分10
25秒前
方勇飞完成签到,获得积分10
25秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182