菁
试剂
铜
激进的
螯合作用
离子
价(化学)
光化学
氧化还原
无机化学
化学
物理
有机化学
量子力学
荧光
作者
Ting He,Qinan Tang,Qiaoju Ren,Yurong Liu,Gang He,Yuantao Pan,Ziguang Wang,Peng Huang,Jing Lin
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-02-06
被引量:4
标识
DOI:10.1021/acsnano.3c10226
摘要
Different valence states of copper (Cu) ions are involved in complicated redox reactions in vivo, which are closely related to tumor proliferation and death pathways, such as cuproptosis and chemodynamic therapy (CDT). Cu ion mediated Fenton-like reagents induced tumor cell death which presents compelling attention for the CDT of tumors. However, the superiority of different valence states of Cu ions in the antitumor effect is unknown. In this study, we investigated different valence states of Cu ions in modulating tumor cell death by Cu-chelated cyanine dye against triple-negative breast cancer. The cuprous ion (Cu+) and copper ion (Cu2+) were chelated with four nitrogen atoms of dipicolylethylenediamine-modified cyanine for the construction of Cu+ and Cu2+ chelated cyanine dyes (denoted as CC1 and CC2, respectively). Upon 660 nm laser irradiation, the CC1 or CC2 can generate reactive oxygen species, which could disrupt the cyanine structure, achieving the rapid release of Cu ions and initiating the Fenton-like reaction for CDT. Compared with Cu2+-based Fenton-like reagent, the CC1 with Cu+ exhibited a better therapeutic outcome for the tumor due to there being no need for a reduction by glutathione and a shorter route to generate more hydroxyl radicals. Our findings suggest the precision delivery of Cu+ could achieve highly efficient antitumor therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI