A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments

计算机科学 恶意软件 探测器 Android(操作系统) 混淆 概念漂移 稳健性(进化) 机器学习 人工智能 源代码 移动设备 数据挖掘 计算机工程 计算机安全 操作系统 电信 生物化学 化学 数据流挖掘 基因
作者
Cuiying Gao,Guangtao Huang,Heng Li,Bihu Wu,Yueming Wu,Wei Yuan
标识
DOI:10.1145/3597503.3623320
摘要

Recent years have witnessed the proliferation of learning-based Android malware detectors. These detectors can be categorized into three types, String-based, Image-based and Graph-based. Most of them have achieved good detection performance under the ideal setting. In reality, however, detectors often face out-of-distribution samples due to the factors such as code obfuscation, concept drift (e.g., software development technique evolution and new malware category emergence), and adversarial examples (AEs). This problem has attracted increasing attention, but there is a lack of comparative studies that evaluate the existing various types of detectors under these challenging environments. In order to fill this gap, we select 12 representative detectors from three types of detectors, and evaluate them in the challenging scenarios involving code obfuscation, concept drift and AEs, respectively. Experimental results reveal that none of the evaluated detectors can maintain their ideal-setting detection performance, and the performance of different types of detectors varies significantly under various challenging environments. We identify several factors contributing to the performance deterioration of detectors, including the limitations of feature extraction methods and learning models. We also analyze the reasons why the detectors of different types show significant performance differences when facing code obfuscation, concept drift and AEs. Finally, we provide practical suggestions from the perspectives of users and researchers, respectively. We hope our work can help understand the detectors of different types, and provide guidance for enhancing their performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无牙完成签到,获得积分10
1秒前
1秒前
蒋时晏应助不工作没饭吃采纳,获得30
1秒前
斯文败类应助雨花花采纳,获得10
2秒前
思源应助250采纳,获得30
2秒前
懵懂的怜南完成签到,获得积分10
3秒前
老姚完成签到,获得积分10
3秒前
IIIIIllllIIII应助九尾狐采纳,获得40
4秒前
深情安青应助老詹头采纳,获得10
4秒前
Jasper应助仙林AK47采纳,获得10
5秒前
5秒前
Shawn发布了新的文献求助10
6秒前
7秒前
8秒前
菜菜1994完成签到,获得积分10
9秒前
延胡索发布了新的文献求助10
10秒前
11秒前
斋斋生发布了新的文献求助10
13秒前
250发布了新的文献求助30
14秒前
15秒前
我是老大应助Jsnacademic采纳,获得50
16秒前
17秒前
17秒前
万能图书馆应助胡图图采纳,获得10
17秒前
白学长应助焱焱不忘采纳,获得50
19秒前
冷傲曼荷发布了新的文献求助10
19秒前
hgl完成签到 ,获得积分20
20秒前
20秒前
费老三发布了新的文献求助10
20秒前
22秒前
22秒前
斋斋生完成签到,获得积分10
22秒前
酱鱼完成签到,获得积分10
23秒前
23秒前
11完成签到 ,获得积分10
23秒前
上官若男应助yingzi采纳,获得10
23秒前
llx发布了新的文献求助10
24秒前
呵呵完成签到,获得积分10
25秒前
刻苦大门完成签到 ,获得积分10
25秒前
璐璇完成签到,获得积分10
26秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464481
求助须知:如何正确求助?哪些是违规求助? 3057850
关于积分的说明 9058824
捐赠科研通 2747974
什么是DOI,文献DOI怎么找? 1507674
科研通“疑难数据库(出版商)”最低求助积分说明 696627
邀请新用户注册赠送积分活动 696248