A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments

计算机科学 恶意软件 探测器 Android(操作系统) 混淆 概念漂移 稳健性(进化) 机器学习 人工智能 源代码 移动设备 数据挖掘 计算机工程 计算机安全 操作系统 电信 生物化学 化学 数据流挖掘 基因
作者
Cuiying Gao,Guangtao Huang,Heng Li,Bihu Wu,Yueming Wu,Wei Yuan
标识
DOI:10.1145/3597503.3623320
摘要

Recent years have witnessed the proliferation of learning-based Android malware detectors. These detectors can be categorized into three types, String-based, Image-based and Graph-based. Most of them have achieved good detection performance under the ideal setting. In reality, however, detectors often face out-of-distribution samples due to the factors such as code obfuscation, concept drift (e.g., software development technique evolution and new malware category emergence), and adversarial examples (AEs). This problem has attracted increasing attention, but there is a lack of comparative studies that evaluate the existing various types of detectors under these challenging environments. In order to fill this gap, we select 12 representative detectors from three types of detectors, and evaluate them in the challenging scenarios involving code obfuscation, concept drift and AEs, respectively. Experimental results reveal that none of the evaluated detectors can maintain their ideal-setting detection performance, and the performance of different types of detectors varies significantly under various challenging environments. We identify several factors contributing to the performance deterioration of detectors, including the limitations of feature extraction methods and learning models. We also analyze the reasons why the detectors of different types show significant performance differences when facing code obfuscation, concept drift and AEs. Finally, we provide practical suggestions from the perspectives of users and researchers, respectively. We hope our work can help understand the detectors of different types, and provide guidance for enhancing their performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还单身的香菇完成签到,获得积分10
刚刚
刚刚
dudu完成签到,获得积分10
刚刚
1111应助andars0828采纳,获得10
刚刚
la完成签到,获得积分10
1秒前
仿若浮云完成签到,获得积分10
1秒前
1秒前
852应助sdl采纳,获得10
1秒前
无昵称发布了新的文献求助10
1秒前
吃人陈完成签到,获得积分10
1秒前
和谐的果汁完成签到 ,获得积分10
2秒前
青衣北风完成签到,获得积分10
2秒前
Legend完成签到,获得积分10
3秒前
熠熠完成签到,获得积分10
3秒前
茴香豆发布了新的文献求助10
3秒前
SciGPT应助勤劳的斑马采纳,获得10
3秒前
zjj发布了新的文献求助10
4秒前
欧大大完成签到,获得积分10
4秒前
帅气面包完成签到,获得积分10
5秒前
5秒前
欧欧欧导发布了新的文献求助10
5秒前
希望天下0贩的0应助yuan采纳,获得30
5秒前
5秒前
温婉发布了新的文献求助20
6秒前
香香发布了新的文献求助10
6秒前
6秒前
waikeyan完成签到,获得积分10
6秒前
7秒前
管海彪完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
ckz完成签到,获得积分0
10秒前
天天快乐应助欢呼妙菱采纳,获得10
10秒前
10秒前
10秒前
MXiV完成签到,获得积分10
11秒前
pipashu应助青菜采纳,获得30
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779