A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments

计算机科学 恶意软件 探测器 Android(操作系统) 混淆 概念漂移 稳健性(进化) 机器学习 人工智能 源代码 移动设备 数据挖掘 计算机工程 计算机安全 操作系统 电信 生物化学 化学 数据流挖掘 基因
作者
Cuiying Gao,Guangtao Huang,Heng Li,Bihu Wu,Yueming Wu,Wei Yuan
标识
DOI:10.1145/3597503.3623320
摘要

Recent years have witnessed the proliferation of learning-based Android malware detectors. These detectors can be categorized into three types, String-based, Image-based and Graph-based. Most of them have achieved good detection performance under the ideal setting. In reality, however, detectors often face out-of-distribution samples due to the factors such as code obfuscation, concept drift (e.g., software development technique evolution and new malware category emergence), and adversarial examples (AEs). This problem has attracted increasing attention, but there is a lack of comparative studies that evaluate the existing various types of detectors under these challenging environments. In order to fill this gap, we select 12 representative detectors from three types of detectors, and evaluate them in the challenging scenarios involving code obfuscation, concept drift and AEs, respectively. Experimental results reveal that none of the evaluated detectors can maintain their ideal-setting detection performance, and the performance of different types of detectors varies significantly under various challenging environments. We identify several factors contributing to the performance deterioration of detectors, including the limitations of feature extraction methods and learning models. We also analyze the reasons why the detectors of different types show significant performance differences when facing code obfuscation, concept drift and AEs. Finally, we provide practical suggestions from the perspectives of users and researchers, respectively. We hope our work can help understand the detectors of different types, and provide guidance for enhancing their performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的青柏完成签到,获得积分10
刚刚
飒飒给飒飒的求助进行了留言
刚刚
罗伯特骚塞完成签到,获得积分10
1秒前
Hello应助Pt-SACs采纳,获得10
1秒前
一一一应助Distance采纳,获得10
1秒前
1秒前
xyp_zjut应助体贴凌柏采纳,获得10
2秒前
量子星尘发布了新的文献求助50
2秒前
在水一方应助妍儿采纳,获得10
3秒前
蔺不平完成签到,获得积分10
4秒前
4秒前
qingxinhuo完成签到 ,获得积分10
4秒前
6秒前
科研通AI5应助枕星采纳,获得10
7秒前
小曾应助pakiorder采纳,获得10
13秒前
wxy完成签到,获得积分10
14秒前
分析完成签到 ,获得积分10
14秒前
hulin_zjxu完成签到,获得积分10
14秒前
桃紫完成签到,获得积分10
16秒前
小董不懂完成签到,获得积分10
17秒前
椰子完成签到,获得积分10
17秒前
沐沐溪三清完成签到,获得积分10
17秒前
18秒前
刘丰完成签到 ,获得积分10
20秒前
郑桂庆完成签到 ,获得积分10
21秒前
zhang完成签到 ,获得积分10
21秒前
yuchen完成签到,获得积分10
22秒前
喜悦的水云完成签到 ,获得积分10
22秒前
23秒前
zhaokunfeng完成签到,获得积分10
23秒前
Y123发布了新的文献求助10
23秒前
wu完成签到,获得积分10
23秒前
高高诗柳完成签到 ,获得积分10
23秒前
王金豪完成签到,获得积分10
23秒前
LSS完成签到,获得积分10
23秒前
榜一大哥的负担完成签到 ,获得积分10
24秒前
Lucas应助qi0625采纳,获得10
24秒前
顾矜应助以筱采纳,获得10
25秒前
景清完成签到,获得积分10
25秒前
细心香烟完成签到 ,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029