已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Hashing for Malware Family Classification and New Malware Identification

恶意软件 计算机科学 散列函数 人工智能 鉴定(生物学) 汉明距离 模式识别(心理学) 数据挖掘 机器学习 计算机安全 算法 植物 生物
作者
Yunchun Zhang,Zikun Liao,Ning Zhang,Shaohui Min,Qi Wang,Tony Q. S. Quek,Mingxiong Zhao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (16): 26837-26851 被引量:1
标识
DOI:10.1109/jiot.2024.3353250
摘要

Although numerous state-of-the-art deep neural networks have recently been proposed for malware classification, effectively detecting malware on a large-scale sample set and identifying zero-day or new malware variants still pose significant challenges. To address this issue, a deep hashing-based malware classification model is designed for malware identification, including two parts: ResNet50-based deep hashing for malware retrieval and voting-based malware classification. Specifically, multiple deep hashing models are developed by extracting the high-layer outputs (feature maps) from the ResNet50 trained with malware gray-scale images in the first part. In this case, to maximize the Hamming distance or dissimilarity among hash values computed with malware samples under different families, a ResNet50-based deep polarized network (RNDPN) is designed to return Top K similar samples. In the second part, we propose a majority-voting and a Hamming-distance-based voting for malware identification according to the retrieved results. The experiment results show that RNDPN outperforms the other six deep hashing models with 97.54% mean average precision (mAP) for malware retrieval when only 40 similar examples are retrieved, where the best results for all deep hashing models are observed with 48 bits hashing code length. Furthermore, the Hamming distance-based voting method implemented with RNDPN demonstrates unparalleled performance in malware classification compared to other models. Notably, it achieves exceptional results in two key aspects: malware classification accuracy with an impressive accuracy rate of 96.5%, and the identification of new or zero-day malware with a commendable accuracy of 85.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longtengfei发布了新的文献求助10
刚刚
1秒前
Owen应助米卡采纳,获得10
1秒前
3秒前
研友_VZG7GZ应助snowskating采纳,获得10
4秒前
jjjeneny发布了新的文献求助10
4秒前
YYY997完成签到,获得积分10
4秒前
小楠楠发布了新的文献求助10
5秒前
6秒前
7秒前
夏蓉发布了新的文献求助10
7秒前
归尘应助天才小熊猫采纳,获得10
8秒前
yun_hong发布了新的文献求助10
8秒前
8秒前
GuMingyang发布了新的文献求助10
10秒前
天天快乐应助longtengfei采纳,获得10
10秒前
11秒前
最牛的kangkang完成签到 ,获得积分10
11秒前
赘婿应助jjjeneny采纳,获得10
11秒前
小楠楠完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
脑洞疼应助yun_hong采纳,获得10
13秒前
ZY完成签到 ,获得积分10
14秒前
15秒前
bkagyin应助啊实打实的卡采纳,获得10
16秒前
xwwx发布了新的文献求助10
16秒前
动听雁山发布了新的文献求助30
18秒前
snowskating发布了新的文献求助10
18秒前
丫丫完成签到 ,获得积分10
18秒前
疯尤金完成签到,获得积分10
19秒前
20秒前
22秒前
科研小狗不怕困难完成签到,获得积分10
23秒前
祥云发布了新的文献求助10
25秒前
26秒前
animenz完成签到,获得积分10
26秒前
杜华詹发布了新的文献求助10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109