Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation

计算机科学 分割 人工智能 水准点(测量) 图像分割 特征(语言学) 模态(人机交互) 计算机视觉 模式识别(心理学) 图像融合 图像(数学) 大地测量学 语言学 哲学 地理
作者
Jinyuan Liu,Zhu Liu,Guanyao Wu,Long Ma,Risheng Liu,Wei Zhong,Zhongxuan Luo,Xin Fan
标识
DOI:10.1109/iccv51070.2023.00745
摘要

Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, e.g., fusion or segmentation, making it hard to reach 'Best of Both Worlds'. To overcome this issue, in this paper, we propose a Multi-interactive Feature learning architecture for image fusion and Segmentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely 7.66% higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/JinyuanLiu-CV/SegMiF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
追梦老年完成签到,获得积分10
刚刚
jc完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
星期五发布了新的文献求助30
2秒前
3秒前
wancheng_发布了新的文献求助10
3秒前
米大王发布了新的文献求助10
4秒前
暖若安阳完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
7秒前
赘婿应助皮谷雪采纳,获得10
7秒前
慕青应助小王爱科研采纳,获得10
7秒前
7秒前
li发布了新的文献求助10
8秒前
善学以致用应助Qi采纳,获得10
8秒前
8秒前
9秒前
悦悦发布了新的文献求助10
9秒前
10秒前
orixero应助坚强的妖妖采纳,获得10
10秒前
坤坤探花发布了新的文献求助10
10秒前
10秒前
11秒前
白华苍松发布了新的文献求助10
11秒前
12秒前
SciGPT应助孟孟采纳,获得10
13秒前
Lucille完成签到,获得积分10
13秒前
jiang发布了新的文献求助10
13秒前
华仔应助gao采纳,获得10
13秒前
文字头-D发布了新的文献求助10
15秒前
真开心发布了新的文献求助30
15秒前
16秒前
16秒前
FashionBoy应助111采纳,获得10
16秒前
fairy完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543673
求助须知:如何正确求助?哪些是违规求助? 3121002
关于积分的说明 9345096
捐赠科研通 2819038
什么是DOI,文献DOI怎么找? 1549916
邀请新用户注册赠送积分活动 722318
科研通“疑难数据库(出版商)”最低求助积分说明 713137