Construction of a radiomics-based model for predicting the efficacy of radiotherapy and chemotherapy for non-small cell lung cancer

接收机工作特性 逻辑回归 人工智能 统计 Lasso(编程语言) 校准 曲线下面积 特征选择 肺癌 医学 数学 计算机科学 肿瘤科 内科学 万维网
作者
Hanjing Zhang,Yu Deng,M.A. Xiaojie,Qian Zou,H M Liu,Ni Tang,Yuanyuan Luo,Xuejing Xiang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (1): e23923-e23923 被引量:3
标识
DOI:10.1016/j.heliyon.2023.e23923
摘要

ObjectivePre-treatment enhanced CT image data were used to train and build models to predict the efficacy of non-small cell lung cancer after conventional radiotherapy and chemotherapy using two classification algorithms, Logistic Regression (LR) and Gauss Naive Bayes (GNB).MethodsIn this study, we used pre-treatment enhanced CT image data for region of interest (ROI) sketching and feature extraction. We utilized the least absolute shrinkage and selection operator (LASSO) mutual confidence method for feature screening. We pre-screened logistic regression (LR) and Gaussian naive Bayes (GNB) classification algorithms and trained and modeled the screened features. We plotted 5-fold and 10-fold cross-validated receiver operating characteristic (ROC) curves to calculate the area under the curve (AUC). We performed DeLong's test for validation and plotted calibration curves and decision curves to assess model performance.ResultsA total of 102 patients were included in this study, and after a comparative analysis of the two models, LR had only slightly lower specificity than GNB, and higher sensitivity, accuracy, AUC value, precision, and F1 value than GNB (training set accuracy: 0.787, AUC value: 0.851; test set accuracy: 0.772, AUC value: 0.849), and the LR model has better performance in both the decision curve and the calibration curve.ConclusionCT can be used for efficacy prediction after radiotherapy and chemotherapy in NSCLC patients. LR is more suitable for predicting whether NSCLC prognosis is in remission without considering the computing speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何女士发布了新的文献求助10
刚刚
四件发布了新的文献求助10
刚刚
boyeer完成签到,获得积分10
刚刚
叮叮当应助Raccoon采纳,获得20
1秒前
Meng完成签到,获得积分10
1秒前
2秒前
owl完成签到,获得积分10
2秒前
2秒前
2秒前
yangliyan发布了新的文献求助30
2秒前
yaswer完成签到,获得积分10
3秒前
情怀应助yomi采纳,获得10
3秒前
科研通AI2S应助fddsfs采纳,获得10
4秒前
波波发布了新的文献求助10
5秒前
5秒前
5秒前
非木关注了科研通微信公众号
6秒前
何女士完成签到,获得积分10
6秒前
rocine完成签到 ,获得积分10
7秒前
7秒前
不讲完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
77发布了新的文献求助10
9秒前
小小高完成签到 ,获得积分10
10秒前
朱z发布了新的文献求助10
11秒前
波波完成签到,获得积分10
11秒前
11秒前
大大泡泡糖完成签到,获得积分10
11秒前
DUANYALI发布了新的文献求助80
12秒前
jjjwln发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
sam发布了新的文献求助10
14秒前
15秒前
16秒前
无私的自中完成签到,获得积分10
16秒前
YYH应助77采纳,获得10
18秒前
冯志华完成签到,获得积分10
18秒前
荒野发布了新的文献求助10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708