Probabilistic State Estimation Under Varying Loading States via the Integration of Time-Varying Autoregressive and Gaussian Process Models

自回归模型 计算机科学 克里金 概率逻辑 非线性自回归外生模型 过程(计算) 不确定度量化 tar(计算) 高斯过程 高斯分布 人工智能 机器学习 数学 统计 物理 量子力学 程序设计语言 操作系统
作者
Ahmad Amer,Shabbir Ahmed,Fotis Kopsaftopoulos
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (6): 3545-3580
标识
DOI:10.1177/14759217231220548
摘要

In this work, probabilistic damage quantification under varying loading conditions in a non-stationary, guided-wave environment is being tackled via the synergistic integration between Time-varying Autoregressive (TAR) models and Gaussian Process regression models (GPRMs). Applying these TAR-GPRMs onto an aluminum coupon with simulated damage under different loading conditions fitted with piezoelectric sensors/actuators, the TAR models show the capability of capturing the non-stationarity in the ultrasonic guided-wave signals generated by the actuators under varying plate-loading conditions. They also provide insights to the maintainer by showing when in time the guided-wave time series deviate the most. In order to take advantage of that, a time instant selection algorithm was developed to allow flexibility in choosing the time instant(s) at which probabilistic damage quantification should be done. Finally, this quantification task is tackled by GPRMs, in which multiple GPRMs are trained using the TAR model parameters under varying conditions, and then used to predict damage size and/or loading state. While this framework is much more powerful in terms of tapping into the dynamics of how guided-waves change with varying conditions compared to simpler forms of GPRMs (such as damage index-trained GPRMs), training of TAR-GPRMs is far more complex. The advantages and challenges associated with the proposed TAR-GPRM approach is presented herein along with potential open areas for research in this regard.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美的山蝶完成签到,获得积分10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
l37u2n应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
灰尘精灵c应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
毛豆应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
领导范儿应助伊吹风子采纳,获得10
2秒前
2秒前
Lily完成签到,获得积分10
3秒前
yyy完成签到,获得积分10
3秒前
迹K发布了新的文献求助10
3秒前
求文得文发布了新的文献求助10
4秒前
4秒前
英俊的铭应助YWJ采纳,获得30
6秒前
zhgj发布了新的文献求助10
6秒前
skyyy发布了新的文献求助10
6秒前
哇咔咔发布了新的文献求助10
6秒前
MISAYA完成签到,获得积分10
7秒前
7秒前
rebome完成签到,获得积分20
8秒前
9秒前
Hongni发布了新的文献求助10
9秒前
10秒前
nihao完成签到 ,获得积分10
10秒前
汉堡包应助迹K采纳,获得10
11秒前
lhanrich完成签到,获得积分10
11秒前
我还以为春天到了完成签到,获得积分10
11秒前
共享精神应助王大包子采纳,获得10
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470844
求助须知:如何正确求助?哪些是违规求助? 3063847
关于积分的说明 9085670
捐赠科研通 2754320
什么是DOI,文献DOI怎么找? 1511386
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253