Azarshahr travertine compression strength prediction based on point-load index (Is) data using multilayer perceptron

抗压强度 计算机科学 岩土工程 多层感知器 杠杆(统计) 数据挖掘 地质学 人工智能 机器学习 人工神经网络 材料科学 复合材料
作者
Yimin Mao,Zhu Licai,Feng Li,Yaser Ahangari Nanehkaran,Maosheng Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-46219-4
摘要

Abstract Azarshahr County in the northwest of Iran is predominantly covered by Azarshahr travertine, a prevailing sedimentary rock. This geological composition has led to extensive open-pit mining activities, particularly in the western and southwestern parts of the county. The rock's drillability and resistance to excavation play a pivotal role in determining its overall durability and hardness, crucial factors that influence the mining process. These attributes are intimately tied to the compressive strength of the rock. Accurate assessment of rock strength is vital for devising reliable excavation methodologies at mining sites. However, conventional approaches for analyzing rock strength have limitations that undermine the precision of strength estimations. In response, this study endeavors to leverage artificial intelligence techniques, specifically the Multilayer Perceptron (MLP), to enhance the prediction of travertine's compressive strength. To formulate a robust model, a comprehensive database containing data from 150 point-load index (I s ) tests on Azarshahr travertine was compiled. This dataset serves as the foundation for the development of the MLP-based predictive model, which proves instrumental in projecting rock compressive strength. The model's accuracy and efficacy were rigorously assessed using the Receiver Operating Characteristic (ROC) curve, employing both training and testing datasets. The modeling outcomes reveal impressive results. The estimated R-squared coefficient attained an impressive value of 0.975 for axial strength and 0.975 for diametral strength. The overall accuracy, as indicated by the Area Under the Curve (AUC) metric, stands at an impressive 0.968. These exceptional performance metrics underscore the efficacy of the MLP model in accurately predicting compressive strength based on the point-load index of samples. The implications of this study are substantial. The predictive model, empowered by the MLP approach, has profound implications for excavation planning and drillability assessment within the studied region's travertine deposits. By facilitating accurate forecasts of rock strength, this model equips mining endeavors with valuable insights for effective planning and execution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Jeje采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
超人研究生完成签到,获得积分10
2秒前
C胖胖完成签到,获得积分10
2秒前
Owen应助chromium22采纳,获得10
2秒前
颜靖仇完成签到,获得积分10
3秒前
大方若山完成签到,获得积分10
3秒前
nanami完成签到,获得积分10
4秒前
白开水完成签到,获得积分10
5秒前
流云完成签到,获得积分10
6秒前
匹诺曹完成签到,获得积分10
6秒前
HaojunWang完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
LilyHan完成签到,获得积分20
9秒前
梁业完成签到,获得积分10
10秒前
苗条映寒关注了科研通微信公众号
10秒前
深情安青应助and999采纳,获得10
10秒前
兮豫完成签到 ,获得积分10
10秒前
10秒前
10秒前
Gtx完成签到,获得积分10
11秒前
淡定大雁关注了科研通微信公众号
11秒前
11秒前
钱多多完成签到,获得积分10
12秒前
王岚发布了新的文献求助10
12秒前
Owen应助栗子采纳,获得10
12秒前
12秒前
欣妹儿发布了新的文献求助10
13秒前
13秒前
包容仙人掌完成签到,获得积分10
13秒前
受伤灵薇完成签到,获得积分10
14秒前
yeyeye发布了新的文献求助10
14秒前
onepine发布了新的文献求助10
14秒前
colormeblue完成签到 ,获得积分10
14秒前
张开心发布了新的文献求助10
14秒前
思源应助Adeus采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069