Azarshahr travertine compression strength prediction based on point-load index (Is) data using multilayer perceptron

抗压强度 计算机科学 岩土工程 多层感知器 杠杆(统计) 数据挖掘 地质学 人工智能 机器学习 人工神经网络 材料科学 复合材料
作者
Yimin Mao,Zhu Licai,Feng Li,Yaser Ahangari Nanehkaran,Maosheng Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-46219-4
摘要

Abstract Azarshahr County in the northwest of Iran is predominantly covered by Azarshahr travertine, a prevailing sedimentary rock. This geological composition has led to extensive open-pit mining activities, particularly in the western and southwestern parts of the county. The rock's drillability and resistance to excavation play a pivotal role in determining its overall durability and hardness, crucial factors that influence the mining process. These attributes are intimately tied to the compressive strength of the rock. Accurate assessment of rock strength is vital for devising reliable excavation methodologies at mining sites. However, conventional approaches for analyzing rock strength have limitations that undermine the precision of strength estimations. In response, this study endeavors to leverage artificial intelligence techniques, specifically the Multilayer Perceptron (MLP), to enhance the prediction of travertine's compressive strength. To formulate a robust model, a comprehensive database containing data from 150 point-load index (I s ) tests on Azarshahr travertine was compiled. This dataset serves as the foundation for the development of the MLP-based predictive model, which proves instrumental in projecting rock compressive strength. The model's accuracy and efficacy were rigorously assessed using the Receiver Operating Characteristic (ROC) curve, employing both training and testing datasets. The modeling outcomes reveal impressive results. The estimated R-squared coefficient attained an impressive value of 0.975 for axial strength and 0.975 for diametral strength. The overall accuracy, as indicated by the Area Under the Curve (AUC) metric, stands at an impressive 0.968. These exceptional performance metrics underscore the efficacy of the MLP model in accurately predicting compressive strength based on the point-load index of samples. The implications of this study are substantial. The predictive model, empowered by the MLP approach, has profound implications for excavation planning and drillability assessment within the studied region's travertine deposits. By facilitating accurate forecasts of rock strength, this model equips mining endeavors with valuable insights for effective planning and execution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助fs采纳,获得10
刚刚
1秒前
2秒前
酷波er应助卿願采纳,获得10
2秒前
Akim应助顺利的乐枫采纳,获得10
3秒前
wwwwww完成签到,获得积分10
3秒前
ding应助李月月采纳,获得10
4秒前
5秒前
隐形曼青应助缓慢的念之采纳,获得10
5秒前
双黄应助djbj2022采纳,获得10
5秒前
ZengQiu发布了新的文献求助10
6秒前
大模型应助穆羊青采纳,获得10
6秒前
7秒前
wwwwww发布了新的文献求助10
8秒前
双黄应助Molly采纳,获得10
8秒前
大小姐发布了新的文献求助10
9秒前
儒雅的焦完成签到 ,获得积分10
9秒前
光暗影发布了新的文献求助10
10秒前
CodeCraft应助猜不猜不采纳,获得10
10秒前
搜集达人应助ZengQiu采纳,获得10
10秒前
李健的小迷弟应助ghost采纳,获得10
11秒前
12秒前
12秒前
不想说发布了新的文献求助10
12秒前
鹏鹏完成签到,获得积分10
12秒前
12秒前
小于完成签到,获得积分10
13秒前
13秒前
活力一斩完成签到 ,获得积分10
13秒前
尊敬的如曼关注了科研通微信公众号
14秒前
14秒前
勤奋的飞风完成签到,获得积分10
14秒前
姜汁发布了新的文献求助10
16秒前
zzz236发布了新的文献求助10
16秒前
科研通AI2S应助漂亮幻莲采纳,获得10
17秒前
18秒前
19秒前
斯文幻天发布了新的文献求助10
20秒前
小流星发布了新的文献求助10
20秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317799
捐赠科研通 2571583
什么是DOI,文献DOI怎么找? 1397109
科研通“疑难数据库(出版商)”最低求助积分说明 653642
邀请新用户注册赠送积分活动 632153