清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Azarshahr travertine compression strength prediction based on point-load index (Is) data using multilayer perceptron

抗压强度 计算机科学 岩土工程 多层感知器 杠杆(统计) 数据挖掘 地质学 人工智能 机器学习 人工神经网络 材料科学 复合材料
作者
Yimin Mao,Zhu Licai,Feng Li,Yaser Ahangari Nanehkaran,Maosheng Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-46219-4
摘要

Abstract Azarshahr County in the northwest of Iran is predominantly covered by Azarshahr travertine, a prevailing sedimentary rock. This geological composition has led to extensive open-pit mining activities, particularly in the western and southwestern parts of the county. The rock's drillability and resistance to excavation play a pivotal role in determining its overall durability and hardness, crucial factors that influence the mining process. These attributes are intimately tied to the compressive strength of the rock. Accurate assessment of rock strength is vital for devising reliable excavation methodologies at mining sites. However, conventional approaches for analyzing rock strength have limitations that undermine the precision of strength estimations. In response, this study endeavors to leverage artificial intelligence techniques, specifically the Multilayer Perceptron (MLP), to enhance the prediction of travertine's compressive strength. To formulate a robust model, a comprehensive database containing data from 150 point-load index (I s ) tests on Azarshahr travertine was compiled. This dataset serves as the foundation for the development of the MLP-based predictive model, which proves instrumental in projecting rock compressive strength. The model's accuracy and efficacy were rigorously assessed using the Receiver Operating Characteristic (ROC) curve, employing both training and testing datasets. The modeling outcomes reveal impressive results. The estimated R-squared coefficient attained an impressive value of 0.975 for axial strength and 0.975 for diametral strength. The overall accuracy, as indicated by the Area Under the Curve (AUC) metric, stands at an impressive 0.968. These exceptional performance metrics underscore the efficacy of the MLP model in accurately predicting compressive strength based on the point-load index of samples. The implications of this study are substantial. The predictive model, empowered by the MLP approach, has profound implications for excavation planning and drillability assessment within the studied region's travertine deposits. By facilitating accurate forecasts of rock strength, this model equips mining endeavors with valuable insights for effective planning and execution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juan完成签到 ,获得积分10
8秒前
谢薇是猪完成签到,获得积分10
50秒前
清脆的飞丹完成签到,获得积分10
52秒前
woxinyouyou完成签到,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
开心苠发布了新的文献求助10
1分钟前
1分钟前
拉长的秋白完成签到 ,获得积分10
2分钟前
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
2分钟前
从容的雪碧完成签到,获得积分10
2分钟前
2分钟前
无悔完成签到 ,获得积分10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Hjz完成签到,获得积分20
3分钟前
coolplex完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
微笑高山完成签到 ,获得积分10
5分钟前
雪山飞龙完成签到,获得积分10
6分钟前
里昂义务完成签到,获得积分10
6分钟前
里昂义务发布了新的文献求助10
6分钟前
光合作用完成签到,获得积分10
6分钟前
fanssw完成签到 ,获得积分10
7分钟前
7分钟前
liuzhigang完成签到 ,获得积分10
7分钟前
JrPaleo101完成签到,获得积分10
7分钟前
Hiram完成签到,获得积分10
8分钟前
8分钟前
研友_nxw2xL完成签到,获得积分10
8分钟前
muriel完成签到,获得积分10
9分钟前
9分钟前
9分钟前
cadcae完成签到,获得积分20
10分钟前
林文隆完成签到,获得积分10
10分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229