An Efficient Single Image De-Raining Model With Decoupled Deep Networks

计算机科学 人工智能 图像处理 图像(数学) 计算机视觉 模式识别(心理学) 算法
作者
W. Li,Gang Chen,Yi Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 69-81 被引量:2
标识
DOI:10.1109/tip.2023.3335822
摘要

Single image de-raining is an emerging paradigm for many outdoor computer vision applications since rain streaks can significantly degrade the visibility and render the function compromised. The introduction of deep learning (DL) has brought about substantial advancement on de-raining methods. However, most existing DL-based methods use single homogeneous network architecture to generate de-rained images in a general image restoration manner, ignoring the discrepancy between rain location detection and rain intensity estimation. We find that this discrepancy would cause feature interference and representation ability degradation problems which significantly affect de-raining performance. In this paper, we propose a novel heterogeneous de-raining architecture aiming to decouple rain location detection and rain intensity estimation (DLINet). For these two subtasks, we provide dedicated network structures according to their differential properties to meet their respective performance requirements. To coordinate the decoupled subnetworks, we develop a high-order collaborative network learning the dynamic inter-layer interactions between rain location and intensity. To effectively supervise the decoupled subnetworks during training, we propose a novel training strategy that imposes task-oriented supervision using the label learned via joint training. Extensive experiments on synthetic datasets and real-world rainy scenes demonstrate that the proposed method has great advantages over existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
畅快访蕊完成签到,获得积分10
1秒前
shinysparrow应助lilylian采纳,获得200
1秒前
科研通AI2S应助二十五采纳,获得10
2秒前
2秒前
迅速友容完成签到 ,获得积分10
4秒前
畅快访蕊发布了新的文献求助10
4秒前
科演小能手完成签到,获得积分10
4秒前
酷波er应助yshog采纳,获得10
4秒前
高兴曼寒发布了新的文献求助10
6秒前
7秒前
想上985完成签到,获得积分10
11秒前
13秒前
13秒前
百花完成签到,获得积分10
15秒前
yshog发布了新的文献求助10
17秒前
Aoren发布了新的文献求助10
18秒前
张雷应助西瓜二郎采纳,获得10
19秒前
健壮的绿凝完成签到,获得积分10
19秒前
可爱的函函应助丹布里采纳,获得10
22秒前
求文献完成签到,获得积分10
23秒前
orixero应助candice624采纳,获得10
23秒前
苏桑焉完成签到 ,获得积分10
25秒前
DWRH完成签到,获得积分10
26秒前
DWRH发布了新的文献求助10
29秒前
31秒前
丹布里完成签到,获得积分20
32秒前
SYLH应助xiaohong采纳,获得10
33秒前
丹布里发布了新的文献求助10
35秒前
38秒前
辇道增七完成签到,获得积分10
40秒前
40秒前
李爱国应助瞿寒采纳,获得10
41秒前
情怀应助DWRH采纳,获得10
42秒前
43秒前
星辰大海应助念姬采纳,获得10
43秒前
angel完成签到,获得积分10
44秒前
Notdodead发布了新的文献求助10
47秒前
49秒前
FJ完成签到,获得积分10
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511761
关于积分的说明 11159641
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804374