An Efficient Single Image De-Raining Model With Decoupled Deep Networks

计算机科学 人工智能 图像处理 图像(数学) 计算机视觉 模式识别(心理学) 算法
作者
W. Li,Gang Chen,Yi Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 69-81 被引量:2
标识
DOI:10.1109/tip.2023.3335822
摘要

Single image de-raining is an emerging paradigm for many outdoor computer vision applications since rain streaks can significantly degrade the visibility and render the function compromised. The introduction of deep learning (DL) has brought about substantial advancement on de-raining methods. However, most existing DL-based methods use single homogeneous network architecture to generate de-rained images in a general image restoration manner, ignoring the discrepancy between rain location detection and rain intensity estimation. We find that this discrepancy would cause feature interference and representation ability degradation problems which significantly affect de-raining performance. In this paper, we propose a novel heterogeneous de-raining architecture aiming to decouple rain location detection and rain intensity estimation (DLINet). For these two subtasks, we provide dedicated network structures according to their differential properties to meet their respective performance requirements. To coordinate the decoupled subnetworks, we develop a high-order collaborative network learning the dynamic inter-layer interactions between rain location and intensity. To effectively supervise the decoupled subnetworks during training, we propose a novel training strategy that imposes task-oriented supervision using the label learned via joint training. Extensive experiments on synthetic datasets and real-world rainy scenes demonstrate that the proposed method has great advantages over existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助lhqbit采纳,获得10
刚刚
王哈哈发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
jxx发布了新的文献求助10
4秒前
善学以致用应助嗯哼采纳,获得10
4秒前
1106发布了新的文献求助10
5秒前
李爱国应助rr采纳,获得10
5秒前
科研通AI5应助有魅力的井采纳,获得10
5秒前
JHL完成签到,获得积分10
5秒前
5秒前
6秒前
恬淡虚无发布了新的文献求助10
6秒前
mukji发布了新的文献求助30
7秒前
ksduoiwex发布了新的文献求助10
8秒前
Jasper应助王哈哈采纳,获得10
8秒前
Ava应助jxx采纳,获得10
8秒前
8秒前
9秒前
上官若男应助花痴的易真采纳,获得10
9秒前
9秒前
时生发布了新的文献求助10
10秒前
阿涵完成签到,获得积分10
10秒前
11秒前
今后应助1106采纳,获得10
12秒前
bad boy完成签到,获得积分10
12秒前
Lucas应助迷你的绮波采纳,获得10
12秒前
杜梦婷完成签到,获得积分20
13秒前
13秒前
李爱国应助fst采纳,获得10
13秒前
13秒前
欣喜亚男发布了新的文献求助10
14秒前
14秒前
LCQ发布了新的文献求助10
14秒前
洋溢发布了新的文献求助10
14秒前
15秒前
憂xqc发布了新的文献求助10
15秒前
隐形曼青应助YI采纳,获得10
16秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769778
求助须知:如何正确求助?哪些是违规求助? 3314816
关于积分的说明 10173854
捐赠科研通 3030138
什么是DOI,文献DOI怎么找? 1662650
邀请新用户注册赠送积分活动 795062
科研通“疑难数据库(出版商)”最低求助积分说明 756519