An Efficient Single Image De-Raining Model With Decoupled Deep Networks

计算机科学 人工智能 图像处理 图像(数学) 计算机视觉 模式识别(心理学) 算法
作者
W. Li,Gang Chen,Yi Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 69-81 被引量:2
标识
DOI:10.1109/tip.2023.3335822
摘要

Single image de-raining is an emerging paradigm for many outdoor computer vision applications since rain streaks can significantly degrade the visibility and render the function compromised. The introduction of deep learning (DL) has brought about substantial advancement on de-raining methods. However, most existing DL-based methods use single homogeneous network architecture to generate de-rained images in a general image restoration manner, ignoring the discrepancy between rain location detection and rain intensity estimation. We find that this discrepancy would cause feature interference and representation ability degradation problems which significantly affect de-raining performance. In this paper, we propose a novel heterogeneous de-raining architecture aiming to decouple rain location detection and rain intensity estimation (DLINet). For these two subtasks, we provide dedicated network structures according to their differential properties to meet their respective performance requirements. To coordinate the decoupled subnetworks, we develop a high-order collaborative network learning the dynamic inter-layer interactions between rain location and intensity. To effectively supervise the decoupled subnetworks during training, we propose a novel training strategy that imposes task-oriented supervision using the label learned via joint training. Extensive experiments on synthetic datasets and real-world rainy scenes demonstrate that the proposed method has great advantages over existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助阳先森采纳,获得10
刚刚
Loualens发布了新的文献求助10
刚刚
负责冰凡完成签到,获得积分10
刚刚
wenlongliu发布了新的文献求助10
刚刚
李东燕完成签到,获得积分10
刚刚
HaohaoLi完成签到,获得积分10
刚刚
喵喵丸子完成签到,获得积分10
1秒前
千江有水完成签到,获得积分10
1秒前
ikun完成签到,获得积分10
1秒前
2秒前
2秒前
虚幻的诗槐完成签到,获得积分20
2秒前
激昂的柚子完成签到,获得积分10
2秒前
ZZZ完成签到,获得积分10
2秒前
Dan完成签到 ,获得积分10
3秒前
zz完成签到,获得积分10
3秒前
duckweedyan完成签到,获得积分10
3秒前
小陀螺完成签到,获得积分10
3秒前
moumou发布了新的文献求助10
4秒前
热心的巧克力完成签到,获得积分10
4秒前
4秒前
健忘冰枫完成签到,获得积分10
5秒前
5秒前
5秒前
体贴的青烟完成签到,获得积分10
5秒前
Sandy完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
qwas完成签到,获得积分10
6秒前
DD发布了新的文献求助20
6秒前
上官若男应助婷咋采纳,获得10
7秒前
无私乐驹发布了新的文献求助10
7秒前
Till完成签到 ,获得积分10
7秒前
许自通发布了新的文献求助10
7秒前
7秒前
Wlynn发布了新的文献求助10
7秒前
8秒前
BaekHyun完成签到,获得积分10
8秒前
8秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517